首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1462篇
  免费   93篇
  国内免费   13篇
电工技术   34篇
综合类   7篇
化学工业   412篇
金属工艺   35篇
机械仪表   56篇
建筑科学   45篇
矿业工程   5篇
能源动力   122篇
轻工业   95篇
水利工程   31篇
石油天然气   20篇
无线电   122篇
一般工业技术   265篇
冶金工业   32篇
原子能技术   22篇
自动化技术   265篇
  2024年   7篇
  2023年   31篇
  2022年   46篇
  2021年   101篇
  2020年   68篇
  2019年   107篇
  2018年   115篇
  2017年   118篇
  2016年   100篇
  2015年   83篇
  2014年   70篇
  2013年   167篇
  2012年   113篇
  2011年   125篇
  2010年   63篇
  2009年   58篇
  2008年   47篇
  2007年   24篇
  2006年   18篇
  2005年   10篇
  2004年   8篇
  2003年   5篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1999年   2篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1987年   6篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   1篇
  1977年   5篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
排序方式: 共有1568条查询结果,搜索用时 0 毫秒
21.
This paper focuses on developing a simulation model for the analysis of transmission pipeline network system (TPNS) with detailed characteristics of compressor stations. Compressor station is the key element in the TPNS since it provides energy to keep the gas moving. The simulation model is used to create a system that simulates TPNS with different configurations to get pressure and flow parameters. The mathematical formulations for the TPNS simulation were derived from the principles of flow of fluid through pipe, mass balance and compressor characteristics. In order to determine the unknown pressure and flow parameters, a visual C++ code was developed based on Newton–Raphson solution technique. Using the parameters obtained, the model evaluates the energy consumption for various configurations in order to guide for the selection of optimal TPNS. Results from the evaluations of the model with the existing TPNS and comparison with the existing approaches showed that the developed simulation model enabled to determine the operational parameters with less than 10 iterations. Hence, the simulation model could assist in decisions regarding the design and operations of the TPNS.  相似文献   
22.
The issue of fault detection and diagnosis (FDD) has gained widespread industrial interest in process condition monitoring applications. An innovative data-driven FDD methodology has been presented in this paper on the basis of a distributed configuration of three adaptive neuro-fuzzy inference system (ANFIS) classifiers for an industrial 440 MW power plant steam turbine with once-through Benson type boiler. Each ANFIS classifier has been developed for a dedicated category of four steam turbine faults. A preliminary set of conceptual and experimental studies has been conducted to realize such fault categorization scheme. A proper selection of four measured variables has been configured to feed each ANFIS classifier with the most influential diagnostic information. This consequently leads to a simple distributed FDD system, facilitating the training and testing phases and yet prevents operational deficiency due to possible cross-correlated measured data effects. A diverse set of test scenarios has been carried out to illustrate the successful diagnostic performances of the proposed FDD system against 12 major faults under challenging noise corrupted measurements and data deformation corresponding to a specific fault time history pattern.  相似文献   
23.
We propose a biologically-motivated computational model for learning task-driven and object-based visual attention control in interactive environments. In this model, top-down attention is learned interactively and is used to search for a desired object in the scene through biasing the bottom-up attention in order to form a need-based and object-driven state representation of the environment. Our model consists of three layers. First, in the early visual processing layer, most salient location of a scene is derived using the biased saliency-based bottom-up model of visual attention. Then a cognitive component in the higher visual processing layer performs an application specific operation like object recognition at the focus of attention. From this information, a state is derived in the decision making and learning layer. Top-down attention is learned by the U-TREE algorithm which successively grows an object-based binary tree. Internal nodes in this tree check the existence of a specific object in the scene by biasing the early vision and the object recognition parts. Its leaves point to states in the action value table. Motor actions are associated with the leaves. After performing a motor action, the agent receives a reinforcement signal from the critic. This signal is alternately used for modifying the tree or updating the action selection policy. The proposed model is evaluated on visual navigation tasks, where obtained results lend support to the applicability and usefulness of the developed method for robotics.  相似文献   
24.
In this paper a new method for handling occlusion in face recognition is presented. In this method the faces are partitioned into blocks and a sequential recognition structure is developed. Then, a spatial attention control strategy over the blocks is learned using reinforcement learning. The outcome of this learning is a sorted list of blocks according to their average importance in the face recognition task. In the recall mode, the sorted blocks are employed sequentially until a confident decision is made. Obtained results of various experiments on the AR face database demonstrate the superior performance of proposed method as compared with that of the holistic approach in the recognition of occluded faces.  相似文献   
25.
This paper presents a novel learning approach for Face Recognition by introducing Optimal Local Basis. Optimal local bases are a set of basis derived by reinforcement learning to represent the face space locally. The reinforcement signal is designed to be correlated to the recognition accuracy. The optimal local bases are derived then by finding the most discriminant features for different parts of the face space, which represents either different individuals or different expressions, orientations, poses, illuminations, and other variants of the same individual. Therefore, unlike most of the existing approaches that solve the recognition problem by using a single basis for all individuals, our proposed method benefits from local information by incorporating different bases for its decision. We also introduce a novel classification scheme that uses reinforcement signal to build a similarity measure in a non-metric space. Experiments on AR, PIE, ORL and YALE databases indicate that the proposed method facilitates robust face recognition under pose, illumination and expression variations. The performance of our method is compared with that of Eigenface, Fisherface, Subclass Discriminant Analysis, and Random Subspace LDA methods as well.  相似文献   
26.
Quantum ternary logic is a promising emerging technology for the future quantum computing. Ternary reversible logic circuit design has potential advantages over the binary ones like its logarithmic reduction in the number of qudits. In reversible logic all computations are done in an invertible fashion. In this paper, we propose a new quantum reversible ternary half adder with quantum cost of only 7 and a new quantum ternary full adder with a quantum cost of only 14. We termed it QTFA. Then we propose 3-qutrit parallel adders. Two different structures are suggested: with and without input carry. Next, we propose quantum ternary coded decimal (TCD) detector circuits. Two different approaches are investigated: based on invalid numbers and based on valid numbers. Finally, we propose the quantum realization of TCD adder circuits. Also here, two approaches are discussed. Overall, the proposed reversible ternary full adder is the best between its counterparts comparing the figures of merits. The proposed 3-qutrit parallel adders are compared with the existing designs and the improvements are reported. On the other hand, this paper suggested the quantum reversible TCD adder designs for the first time. All the proposed designs are realized using macro-level ternary Toffoli gates which are built on the top of the ion-trap realizable ternary 1-qutrit gates and 2-qutrit Muthukrishnan–Stroud gates.  相似文献   
27.
In this article, the influences of rotational speed and velocity of viscous fluid flow on free vibration behavior of spinning single-walled carbon nanotubes (SWCNTs) are investigated using the modified couple stress theory (MCST). Taking attention to the first-order shear deformation theory, the modeled rotating SWCNT and its equations of motion are derived using Hamilton’s principle. The formulations include Coriolis, centrifugal and initial hoop tension effects due to rotation of the SWCNT. This system is conveying viscous fluid, and the related force is calculated by modified Navier–Stokes relation considering slip boundary condition and Knudsen number. The accuracy of the presented model is validated with some cases in the literatures. Novelty of this study is considering the effects of spinning, conveying viscous flow and MCST in addition to considering the various boundary conditions of the SWCNT. Generalized differential quadrature method is used to approximately discretize the model and to approximate the equations of motion. Then, influence of material length scale parameter, velocity of viscous fluid flow, angular velocity, length, length-to-radius ratio, radius-to-thickness ratio and boundary conditions on critical speed, critical velocity and natural frequency of the rotating SWCNT conveying viscous fluid flow are investigated.  相似文献   
28.
We present an approach to detecting and localizing defects in random color textures which requires only a few defect free samples for unsupervised training. It is assumed that each image is generated by a superposition of various-size image patches with added variations at each pixel position. These image patches and their corresponding variances are referred to here as textural exemplars or texems. Mixture models are applied to obtain the texems using multiscale analysis to reduce the computational costs. Novelty detection on color texture surfaces is performed by examining the same-source similarity based on the data likelihood in multiscale, followed by logical processes to combine the defect candidates to localize defects. The proposed method is compared against a Gabor filter bank-based novelty detection method. Also, we compare different texem generalization schemes for defect detection in terms of accuracy and efficiency.  相似文献   
29.
Separation of particles from liquid in the large gravitational tanks is widely used in mining and industrial wastewater treatment process. Thickener is key unit in the operational processes of hydrometallurgy and is used to separate solid from liquid. In this study, population balance models were combined with computational fluid dynamics (CFD) for modeling the tailing thickener. Parameters such as feed flow rate, flocculant dosage, inlet solid percent and feedwell were investigated. CFD was used to simulate the industrial tailing thickener with settled bed of 120 m diameter which is located in the Sarcheshmeh copper mine. Important factor of drag force that defines the rake torque of rotating paddles on the bed was also determined. Two phases turbulence model of Eulerian/Eulerian in accordance with turbulence model of k-ε was used in the steady-state. Also population balance model consists of 15 groups of particle sizes with Luo and Lehr kernel was used for aggregation/breakage kernel. The simulation results showed good agreement with the operational data.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号