首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7405篇
  免费   501篇
  国内免费   69篇
电工技术   144篇
综合类   24篇
化学工业   1651篇
金属工艺   111篇
机械仪表   299篇
建筑科学   148篇
矿业工程   9篇
能源动力   475篇
轻工业   853篇
水利工程   81篇
石油天然气   54篇
武器工业   2篇
无线电   928篇
一般工业技术   1544篇
冶金工业   349篇
原子能技术   63篇
自动化技术   1240篇
  2024年   41篇
  2023年   239篇
  2022年   552篇
  2021年   834篇
  2020年   512篇
  2019年   585篇
  2018年   567篇
  2017年   447篇
  2016年   468篇
  2015年   292篇
  2014年   356篇
  2013年   514篇
  2012年   295篇
  2011年   367篇
  2010年   218篇
  2009年   199篇
  2008年   154篇
  2007年   143篇
  2006年   76篇
  2005年   58篇
  2004年   78篇
  2003年   65篇
  2002年   52篇
  2001年   36篇
  2000年   43篇
  1999年   43篇
  1998年   108篇
  1997年   57篇
  1996年   69篇
  1995年   57篇
  1994年   47篇
  1993年   44篇
  1992年   24篇
  1991年   38篇
  1990年   27篇
  1989年   30篇
  1988年   26篇
  1987年   22篇
  1986年   15篇
  1985年   20篇
  1984年   21篇
  1983年   18篇
  1982年   18篇
  1981年   13篇
  1980年   6篇
  1979年   16篇
  1978年   12篇
  1976年   7篇
  1973年   5篇
  1972年   7篇
排序方式: 共有7975条查询结果,搜索用时 15 毫秒
91.
Identifying fruit disease manually is time-consuming, expert-required, and expensive; thus, a computer-based automated system is widely required. Fruit diseases affect not only the quality but also the quantity. As a result, it is possible to detect the disease early on and cure the fruits using computer-based techniques. However, computer-based methods face several challenges, including low contrast, a lack of dataset for training a model, and inappropriate feature extraction for final classification. In this paper, we proposed an automated framework for detecting apple fruit leaf diseases using CNN and a hybrid optimization algorithm. Data augmentation is performed initially to balance the selected apple dataset. After that, two pre-trained deep models are fine-tuning and trained using transfer learning. Then, a fusion technique is proposed named Parallel Correlation Threshold (PCT). The fused feature vector is optimized in the next step using a hybrid optimization algorithm. The selected features are finally classified using machine learning algorithms. Four different experiments have been carried out on the augmented Plant Village dataset and yielded the best accuracy of 99.8%. The accuracy of the proposed framework is also compared to that of several neural nets, and it outperforms them all.  相似文献   
92.
Continuous improvements in very-large-scale integration (VLSI) technology and design software have significantly broadened the scope of digital signal processing (DSP) applications. The use of application-specific integrated circuits (ASICs) and programmable digital signal processors for many DSP applications have changed, even though new system implementations based on reconfigurable computing are becoming more complex. Adaptable platforms that combine hardware and software programmability efficiency are rapidly maturing with discrete wavelet transformation (DWT) and sophisticated computerized design techniques, which are much needed in today’s modern world. New research and commercial efforts to sustain power optimization, cost savings, and improved runtime effectiveness have been initiated as initial reconfigurable technologies have emerged. Hence, in this paper, it is proposed that the DWT method can be implemented on a field-programmable gate array in a digital architecture (FPGA-DA). We examined the effects of quantization on DWT performance in classification problems to demonstrate its reliability concerning fixed-point math implementations. The Advanced Encryption Standard (AES) algorithm for DWT learning used in this architecture is less responsive to resampling errors than the previously proposed solution in the literature using the artificial neural networks (ANN) method. By reducing hardware area by 57%, the proposed system has a higher throughput rate of 88.72%, reliability analysis of 95.5% compared to the other standard methods.  相似文献   
93.
The extent of the peril associated with cancer can be perceived from the lack of treatment, ineffective early diagnosis techniques, and most importantly its fatality rate. Globally, cancer is the second leading cause of death and among over a hundred types of cancer; lung cancer is the second most common type of cancer as well as the leading cause of cancer-related deaths. Anyhow, an accurate lung cancer diagnosis in a timely manner can elevate the likelihood of survival by a noticeable margin and medical imaging is a prevalent manner of cancer diagnosis since it is easily accessible to people around the globe. Nonetheless, this is not eminently efficacious considering human inspection of medical images can yield a high false positive rate. Ineffective and inefficient diagnosis is a crucial reason for such a high mortality rate for this malady. However, the conspicuous advancements in deep learning and artificial intelligence have stimulated the development of exceedingly precise diagnosis systems. The development and performance of these systems rely prominently on the data that is used to train these systems. A standard problem witnessed in publicly available medical image datasets is the severe imbalance of data between different classes. This grave imbalance of data can make a deep learning model biased towards the dominant class and unable to generalize. This study aims to present an end-to-end convolutional neural network that can accurately differentiate lung nodules from non-nodules and reduce the false positive rate to a bare minimum. To tackle the problem of data imbalance, we oversampled the data by transforming available images in the minority class. The average false positive rate in the proposed method is a mere 1.5 percent. However, the average false negative rate is 31.76 percent. The proposed neural network has 68.66 percent sensitivity and 98.42 percent specificity.  相似文献   
94.
Despite the planned installation and operations of the traditional IEEE 802.11 networks, they still experience degraded performance due to the number of inefficiencies. One of the main reasons is the received signal strength indicator (RSSI) association problem, in which the user remains connected to the access point (AP) unless the RSSI becomes too weak. In this paper, we propose a multi-criterion association (WiMA) scheme based on software defined networking (SDN) in Wi-Fi networks. An association solution based on multi-criterion such as AP load, RSSI, and channel occupancy is proposed to satisfy the quality of service (QoS). SDN having an overall view of the network takes the association and reassociation decisions making the handoffs smooth in throughput performance. To implement WiMA extensive simulations runs are carried out on Mininet-NS3-Wi-Fi network simulator. The performance evaluation shows that the WiMA significantly reduces the average number of retransmissions by 5%–30% and enhances the throughput by 20%–50%, hence maintaining user fairness and accommodating more wireless devices and traffic load in the network, when compared to traditional client-driven (CD) approach and state of the art Wi-Balance approach.  相似文献   
95.
One of the most pressing concerns for the consumer market is the detection of adulteration in meat products due to their preciousness. The rapid and accurate identification mechanism for lard adulteration in meat products is highly necessary, for developing a mechanism trusted by consumers and that can be used to make a definitive diagnosis. Fourier Transform Infrared Spectroscopy (FTIR) is used in this work to identify lard adulteration in cow, lamb, and chicken samples. A simplified extraction method was implied to obtain the lipids from pure and adulterated meat. Adulterated samples were obtained by mixing lard with chicken, lamb, and beef with different concentrations (10%–50% v/v). Principal component analysis (PCA) and partial least square (PLS) were used to develop a calibration model at 800–3500 cm−1. Three-dimension PCA was successfully used by dividing the spectrum in three regions to classify lard meat adulteration in chicken, lamb, and beef samples. The corresponding FTIR peaks for the lard have been observed at 1159.6, 1743.4, 2853.1, and 2922.5 cm−1, which differentiate chicken, lamb, and beef samples. The wavenumbers offer the highest determination coefficient R2 value of 0.846 and lowest root mean square error of calibration (RMSEC) and root mean square error prediction (RMSEP) with an accuracy of 84.6%. Even the tiniest fat adulteration up to 10% can be reliably discovered using this methodology.  相似文献   
96.
Link relative-based approach was used in an article (see reference 1) to enhance the performance of the cumulative sum (CUSUM) control chart. This technique involves the use of firstly, the link relative variable to convert the process observations in a relative to the mean form and secondly, optimal constants to define a new variable which is used as the plotting statistic of the link relative CUSUM chart. In this article, it is proven through simulation study that the optimal constants with fixed values, as reported in the aforementioned article, give different results. Instead, if the regression technique is used, then the same results will be obtained.  相似文献   
97.
This research aims to develop a method for the amalgamation of graphene nanoplatelets in glass/epoxy composites. The poor interface bonding between the fiber and matrix is critical and hinders the full performance of the composites. Glass fabric and epoxy were used as reinforcement and matrix in the composite, respectively. Graphene nanoplatelets were utilized as an additional nano-materials filler for the composites. Glass/graphene/epoxy and glass/epoxy composites were fabricated via vacuum infusion molding. The new method of applying graphene nanoplatelets as secondary reinforcement in the composite was developed based on proper functionalization in the sonication process. The physical, tensile, flexural, and short beam interlaminar properties of fabricated composites were examined to analyze the method's effectiveness. The results showed that density decreased by around 5 %; however, thickness increased by around 34 % after introducing graphene nanoplatelets into the composites. The tensile strength and modulus of the composites declined by approximately 19 %, on the other hand, flexural strength and modulus increased by around 63.3 % and 8.3 %, respectively, after the addition of graphene nanoplatelets into the composites. Moreover, interlaminar shear strength of the composite was enhanced by approximately 50 %.  相似文献   
98.
The alkylamines and their related boron derivatives demonstrated potent cytotoxicity against the growth of murine and human tissue cultured cells. These agents did not necessarily require the boron atom to possess potent cytotoxic action in certain tumor lines. Their ability to suppress tumor cell growth was based on their inhibition of DNA and protein syntheses. DNA synthesis was reduced because purine synthesis was blocked at the enzyme site of IMP dehydrogenase by the agents. In addition ribonucleotide reductase and nucleoside kinase activities were reduced by the agents which would account for the reduced d[NTP] pools. The DNA template or molecule may be a target of the drugs with regard to binding of the drug to nucleoside bases or intercalaction of the drug between DNA base pairs. Only some Of the agents caused DNA fragmentation with reduced DNA viscosity. These effects would contribute to overall cell death afforded by the agents.  相似文献   
99.
Coordinated controller tuning of the boiler turbine unit is a challenging task due to the nonlinear and coupling characteristics of the system. In this paper, a new variant of binary particle swarm optimization (PSO) algorithm, called probability based binary PSO (PBPSO), is presented to tune the parameters of a coordinated controller. The simulation results show that PBPSO can effectively optimize the control parameters and achieves better control performance than those based on standard discrete binary PSO, modified binary PSO, and standard continuous PSO.  相似文献   
100.
In this paper, we develop an interactive analysis and visualization tool for probabilistic segmentation results in medical imaging. We provide a systematic approach to analyze, interact and highlight regions of segmentation uncertainty. We introduce a set of visual analysis widgets integrating different approaches to analyze multivariate probabilistic field data with direct volume rendering. We demonstrate the user's ability to identify suspicious regions (e.g. tumors) and correct the misclassification results using a novel uncertainty‐based segmentation editing technique. We evaluate our system and demonstrate its usefulness in the context of static and time‐varying medical imaging datasets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号