首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   942篇
  免费   54篇
  国内免费   2篇
电工技术   1篇
综合类   1篇
化学工业   376篇
金属工艺   38篇
机械仪表   23篇
建筑科学   23篇
矿业工程   8篇
能源动力   39篇
轻工业   58篇
石油天然气   1篇
无线电   48篇
一般工业技术   144篇
冶金工业   59篇
原子能技术   6篇
自动化技术   173篇
  2024年   5篇
  2023年   13篇
  2022年   97篇
  2021年   118篇
  2020年   26篇
  2019年   26篇
  2018年   47篇
  2017年   40篇
  2016年   51篇
  2015年   28篇
  2014年   54篇
  2013年   61篇
  2012年   58篇
  2011年   60篇
  2010年   49篇
  2009年   35篇
  2008年   29篇
  2007年   20篇
  2006年   27篇
  2005年   23篇
  2004年   22篇
  2003年   14篇
  2002年   7篇
  2001年   8篇
  2000年   5篇
  1999年   12篇
  1998年   9篇
  1997年   8篇
  1996年   5篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   2篇
  1978年   2篇
  1977年   2篇
  1976年   7篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
排序方式: 共有998条查询结果,搜索用时 15 毫秒
51.
Fast advances in polymer science have provided new hydrogels for applications in drug delivery. Among modern drug formulations, polymeric type stimuli-responsive hydrogels (SRHs), also called smart hydrogels, deserve special attention as they revealed to be a promising tool useful for a variety of pharmaceutical and biomedical applications. In fact, the basic feature of these systems is the ability to change their mechanical properties, swelling ability, hydrophilicity, or bioactive molecules permeability, which are influenced by various stimuli, particularly enzymes. Indeed, among a great number of SHRs, enzyme-responsive hydrogels (ERHs) gain much interest as they possess several potential biomedical applications (e.g., in controlled release, drug delivery, etc.). Such a new type of SHRs directly respond to many different enzymes even under mild conditions. Therefore, they show either reversible or irreversible enzyme-induced changes both in chemical and physical properties. This article reviews the state-of-the art in ERHs designed for controlled drug delivery systems (DDSs). Principal enzymes used for biomedical hydrogel preparation were presented and different ERHs were further characterized focusing mainly on glucose oxidase-, β-galactosidase- and metalloproteinases-based catalyzed reactions. Additionally, strategies employed to produce ERHs were described. The current state of knowledge and the discussion were made on successful applications and prospects for further development of effective methods used to obtain ERH as DDSs.  相似文献   
52.
The COVID-19 pandemic caused by the SARS-CoV-2 virus made it necessary to search for new options for both causal treatment and mitigation of its symptoms. Scientists and researchers around the world are constantly looking for the best therapeutic options. These difficult circumstances have also spurred the re-examination of the potential of natural substances contained in Cannabis sativa L. Cannabinoids, apart from CB1 and CB2 receptors, may act multifacetedly through a number of other receptors, such as the GPR55, TRPV1, PPARs, 5-HT1A, adenosine and glycine receptors. The complex anti-inflammatory and antiviral effects of cannabinoids have been confirmed by interactions with various signaling pathways. Considering the fact that the SARS-CoV-2 virus causes excessive immune response and triggers an inflammatory cascade, and that cannabinoids have the ability to regulate these processes, it can be assumed that they have potential to be used in the treatment of COVID-19. During the pandemic, there were many publications on the subject of COVID-19, which indicate the potential impact of cannabinoids not only on the course of the disease, but also their role in prevention. It is worth noting that the anti-inflammatory and antiviral potential are shown not only by well-known cannabinoids, such as cannabidiol (CBD), but also secondary cannabinoids, such as cannabigerolic acid (CBGA) and terpenes, emphasizing the role of all of the plant’s compounds and the entourage effect. This article presents a narrative review of the current knowledge in this area available in the PubMed, Scopus and Web of Science medical databases.  相似文献   
53.
Neutrophils are a type of granulocyte important in the “first line of defense” of the innate immune system. Upon activation, they facilitate the destruction of invading microorganisms by the production of superoxide radicals, as well as the release of the enzymatic contents of their lysozymes. These enzymes include specific serine proteases: cathepsin G, neutrophil elastase, proteinase 3, as well as the recently discovered neutrophil serine protease 4 (NSP4). Under normal conditions, the proteolytic activity of neutrophil proteases is tightly regulated by endogenous serpins; however, this mechanism can be subverted during tissue stress, thereby resulting in the uncontrolled activity of serine proteases, which induce chronic inflammation and subsequent pathology. Herein, we describe the development of low‐molecular‐weight activity‐based probes that specifically target the active sites of neutrophil proteases.  相似文献   
54.
The performance of the present‐day scanning electron microscopy (SEM) extends far beyond delivering electronic images of the surface topography. Oxide dispersion strengthened (ODS) steel is on of the most promising materials for the future nuclear fusion reactor because of its good radiation resistance, and higher operation temperature up to 750°C. The microstructure of ODS should not exceed tens of nm, therefore there is a strong need in a fast and reliable technique for their characterization. In this work, the results of low‐kV SEM characterization of nanoprecipitates formed in the ODS matrix are presented. Application of highly sensitive photo‐diode BSE detector in SEM imaging allowed for the registration of single nm‐sized precipitates in the vicinity of the ODS alloys. The composition of the precipitates has been confirmed by TEM‐EDS.  相似文献   
55.
The aim of the work was to obtain hybrid coatings containing silver, copper, and zinc nanoparticles on the TiAlV medical alloy via a sol–gel process. The developed layers were designed to bring about a bactericidal and fungicidal effect, as well as for protection against surgical scratches during the implantation of implants used in veterinary medicine. In this work, the authors focused on evaluating the microstructure (SEM + EDS); the structure (XRD, FTIR); and the surface properties, such as wettability, free surface energy, and roughness of layers with various concentrations of metallic nanoparticles (2 and 5 mol %). Our results confirmed that the sol–gel method enables the easy manufacturing of hybrid layers endowed with different porosity values as well as various shapes and sizes of metallic nanoparticles. A higher concentration of nanoparticles was observed on the surface containing 5 mol % of metallic salts. The highest degree of homogeneity was obtained for the layers containing silver nanoparticles. In addition, the silver nanoparticles were round and had the smallest dimensions, even below 20 nm. The FTIR and XRD structural studies confirmed the presence of an organosilicon matrix containing all three types of the metallic particles. We conclude that the higher concentration of nanoparticles influenced the alloy surface parameters.  相似文献   
56.
Inflammatory bowel diseases (IBD) are commonly considered as Crohn’s disease and ulcerative colitis, but the possibility that the alterations in gut microbiota and oxidative stress may affect the course of experimental colitis in obese physically exercising mice treated with the intestinal alkaline phosphatase (IAP) has been little elucidated. Mice fed a high-fat-diet (HFD) or normal diet (ND) for 14 weeks were randomly assigned to exercise on spinning wheels (SW) for 7 weeks and treated with IAP followed by intrarectal administration of TNBS. The disease activity index (DAI), grip muscle strength test, oxidative stress biomarkers (MDA, SOD, GSH), DNA damage (8-OHdG), the plasma levels of cytokines IL-2, IL-6, IL-10, IL-12p70, IL-17a, TNF-α, MCP-1 and leptin were assessed, and the stool composition of the intestinal microbiota was determined by next generation sequencing (NGS). The TNBS-induced colitis was worsened in obese sedentary mice as manifested by severe colonic damage, an increase in DAI, oxidative stress biomarkers, DNA damage and decreased muscle strength. The longer running distance and weight loss was observed in mice given IAP or subjected to IAP + SW compared to sedentary ones. Less heterogeneous microbial composition was noticed in sedentary obese colitis mice and this effect disappeared in IAP + SW mice. Absence of Alistipes, lower proportion of Turicibacter, Proteobacteria and Faecalibacterium, an increase in Firmicutes and Clostridium, a decrease in oxidative stress biomarkers, 8-OHdG content and proinflammatory cytokines were observed in IAP + SW mice. IAP supplementation in combination with moderate physical activity attenuates the severity of murine colitis complicated by obesity through a mechanism involving the downregulation of the intestinal cytokine/chemokine network and oxidative stress, the modulation of the gut microbiota and an improvement of muscle strength.  相似文献   
57.
The paper presents a two-step method for obtaining sodium tripolyphosphate (STPP) with a bulk density of about 0.90 kg/dm3 after the first step, using sodium phosphates after spray drying and water as the raw materials. STPP with a bulk density of 0.95–1.00 kg/dm3 was generated in the second stage, using STPP from the first step and water as the raw materials. The paper presents statistical analyses to define the process parameters which significantly affect sodium tripolyphosphate bulk density. The determination of the profile approximation and utility function enabled the optimization of process parameters for obtaining a product with a bulk density of 0.95–1.00 kg/dm3. Mechanisms of increasing bulk density was indicated by studies on the microstructure of the product and phase transformation during the process. The data were empirically verified and satisfactory results were found.  相似文献   
58.
Effective elastic properties and residual stresses were assessed in directionally solidified ternary eutectic ceramic, Al2O3/YAG/ZrO2, by finite element analyses. A 3D finite element model was generated from a CT scan, representative of the microstructure and with a similar volume fraction. Effective elastic properties were calculated by numerical homogenisation. They highlight a quasi-isotropic behaviour of the ternary eutectic ceramics. Despite the difficulties to measure the strain, the dispersion observed in the results and the limited reliability of the materials properties, the results constitute a step towards a better understanding of the material behaviour. Thermal residual stresses induced by the manufacturing were also evaluated. Tensile residual stresses in yttria-stabilised zirconia and compressive residual stresses in YAG and alumina were highlighted. This evaluation also shed light on the influence of the phase morphology in the microstructure. Indeed, the computed spatial distribution of the residual stresses showed that they are different from one position to another due to the variation in phase morphology and also to material properties variability. Therefore, it is important when numerically assessing the thermomechanical properties to take into account the microstructure morphology as well as the variability of material properties.  相似文献   
59.
Ecological adsorption technology is becoming a focus of attention by industry due to the utilization of low grade thermal energy sources for cooling production. It can be a promising part of sustainable development concept of the global economy. Therefore, research aiming at improving their performance i.e. Coefficient of Performance (COP) by optimizing the construction of sorption beds with a built in heat exchanger system is crucial. The heat transfer characteristics between the bed of porous media (sorbent) and surface of the heat exchanger system determine the heating power of an adsorption chiller. The HP increase can be obtained by heat transfer intensification due to the increase in the thermal conductivity of the sorbent layer in the vicinity of the heat exchanger’s surface. The novel modification of the sorbent layer structure is proposed in the paper in order to improve the heat transfer processes in the heat exchanger boundary layer. The analysis of desorption process conditions in the parametric model of a coated and fixed adsorption bed design is presented in the paper. The computational fluid dynamics (CFD) with conjugate heat transfer analysis is used to determine the crucial input parameters (temperature distribution in the sorbent bed) for further analytical calculations. The commercial code Ansys Fluent was used to perform numerical simulations. The developed computational model consisted of three subdomains representing heating water, heat exchanger material (copper) and sorbent (silica gel). The comparison of a novel coated design and a conventional fixed bed is discussed in the paper. The numerical analysis is based on experimental thermal conductivity measurements of the sorbent layer in different configurations, which were performed using Laser Flash Method.  相似文献   
60.
Computations of thermodynamic equilibrium conditions for depositing carbon in various crystallographic forms are carried out for C-H-O reformates from methane and LPG. Selected examples of reactions accompanying oxidation or thermal decomposition of C1 to C4 hydrocarbons are presented, followed by theoretical fundamentals for chemical equilibrium. Table values of the standard chemical potential of the reactants are cited along with respective reaction equilibrium constants. Thermodynamic critical conditions for deposition of several carbon allotropes from gaseous reformates originated from partial oxidation with either air or pure oxygen are also quantified. Computation results are presented graphically in terms of the oxygen-to-carbon ratio, O/C, against temperature for varied pressure and oxidant. Zones of either carbon deposition or carbon-free are specified for graphite or one of the two carbon nanotubes, CNTs. The maximum effect of increase in the critical O/C for a CNT against pure graphite is estimated at 85%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号