首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2438篇
  免费   103篇
  国内免费   3篇
电工技术   24篇
综合类   11篇
化学工业   489篇
金属工艺   56篇
机械仪表   51篇
建筑科学   149篇
矿业工程   11篇
能源动力   63篇
轻工业   158篇
水利工程   9篇
石油天然气   5篇
无线电   177篇
一般工业技术   438篇
冶金工业   490篇
原子能技术   17篇
自动化技术   396篇
  2023年   22篇
  2022年   38篇
  2021年   68篇
  2020年   56篇
  2019年   60篇
  2018年   49篇
  2017年   40篇
  2016年   66篇
  2015年   56篇
  2014年   60篇
  2013年   142篇
  2012年   107篇
  2011年   147篇
  2010年   102篇
  2009年   100篇
  2008年   120篇
  2007年   119篇
  2006年   85篇
  2005年   84篇
  2004年   53篇
  2003年   60篇
  2002年   58篇
  2001年   48篇
  2000年   27篇
  1999年   45篇
  1998年   114篇
  1997年   64篇
  1996年   65篇
  1995年   50篇
  1994年   28篇
  1993年   32篇
  1992年   26篇
  1991年   23篇
  1990年   21篇
  1989年   26篇
  1988年   24篇
  1987年   27篇
  1986年   18篇
  1984年   14篇
  1983年   14篇
  1982年   17篇
  1981年   12篇
  1980年   13篇
  1979年   14篇
  1978年   13篇
  1977年   12篇
  1976年   34篇
  1975年   8篇
  1972年   10篇
  1971年   9篇
排序方式: 共有2544条查询结果,搜索用时 15 毫秒
991.
The textile industry processes a large quantity of fibres obtained from various animals of which wool is commercially the most important. However, it has some technical problems which affect the quality and performance of the finished products such as felting shrinkage, handle, lustre, pilling and dyeability. These problems may be attributed mainly to the presence of wool scales on the fibre surface. The scales are relatively hard and have sharp edges which are responsible for causing fibre directional movement and shrinkage during felting. Furthermore, the scales also serve as a barrier for diffusion processes which will adversely affect the sorption behaviour. In recent years, there has been an increase in the modification of wool surface scales by physical means such as mechanical, thermal and ultrasonic treatments, and chemical methods such as oxidation, reduction, enzyme and ozone treatments which can solve the felting and sorption problems to a certain extent. Hitherto, chemical treatments are still the most commonly used descaling methods in the industry.

Owing to the effect of pollution caused by various chemical treatments, physical treatments such as plasma treatment have been introduced recently as they are capable of achieving a similar descaling effect. Since the 1960s, scientists have successfully exploited plasma techniques in materials science. The plasma technologies have been fully utilised to improve the surface properties of fibres in many applications. The fibres that can be modified by plasmas include almost all kinds of fibre such as textile fibres, metallic fibres, glass fibres, carbon fibres, fabrics and other organic fibres.

Plasma-treated wool has different physical and chemical properties when compared with the untreated one. The changes in fibre properties alter the performance of the existing textile processes such as spinning, dyeing and finishing to produce a series of versatile wool products with superior quality. Therefore, the aim of this monograph is to give a critical appreciation of the latest developments of plasma treatment of wool. In this monograph, different surface treatments of wool including plasma treatment will be precisely described. Since plasma treatment can be used to alter material surfaces by removing outer layers, thus the method of generation of plasma and the reaction mechanisms between material surface and plasma species will be highlighted in this monograph. Similar to other chemical reactions, the factors such as (i) the nature of gas used, (ii) gas flow rate, (iii) system pressure and (iv) discharge power affecting the final results of plasma treatments will be described.

The main content of this monograph includes the application of plasma treatment on wool under different industrial conditions such as dyeing and shrinkproofing processing which will be reported and discussed respectively. In addition, the common analytical methods such as Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Fourier Transform Infrared Spectroscopy with Attenuated Total Internal Reflectance mode analysis employed for characterising the surface properties of plasma-treated wool will be discussed. Based on the surface characterisation results, more details about the mechanism of plasma treatment that affects the wool processing such as dyeing and shrinkproofing can be explored.

In the latter part of the monograph, the serviceability of plasma-treated wool fabrics is discussed and the possibility of applying the plasma-treated wool fabric to industrial use is evaluated based on standard performance specification, e.g. ASTM. The fabric performance in terms of tailorability and sewability are also discussed with reference to the Kawabata Evaluation System for Fabric (KES-F) results. As the plasma process is a “dry” process, i.e. the water used in the plasma system can be recycled, thus it can solve the industrial effluent problem resulting in providing an effective means for the modification of wool fabrics.  相似文献   
992.
Natural fibres, especially cotton, are still the most important kinds of fibres because of their numerous advantages such as high tensile strength, good abrasion resistance, high moisture absorption, quick drying and absence of static problems. However, cotton has poor elasticity and resilience, i.e. poor wrinkle recovery property. It is weakened easily by acids and resin chemicals used in finishing processes. In addition, fabrics made from untreated cotton fibres burn easily with a high flame velocity and are prone to being attacked by mildew and bacteria. Reducing wrinkling, flammability and microbial attacks of cotton fibre have been the major challenge facing the textile industry. The aim of this paper is to provide an overview of the current status of developments in functional finishing of cotton fabrics. Functional finishing agents, especially cross-linking agents, are embedded in cotton fabrics with the aid of acid catalysts, followed by drying and curing at high temperatures. The treated cotton fabrics often suffer from decrease in tensile strength, tear strength, abrasion resistance and sewability with a stiff, harsh and uncomfortable feel. Moreover, chemicals present in finishing agents react in the curing process to form some residues, which may even release free formaldehyde, which is of carcinogenic nature. The amount of formaldehyde remaining in the finished product depends largely on the amount and kind of finishing agents and catalysts used, as well as the curing conditions. Over the last decade, there have been many changes in the textile industry. The importance of environmental issues, which influence the direction of chemical finishing and reshaping the types of speciality chemicals used in textile wet processing, is a dominant theme in the market. Apart from the trend towards the use of environment-friendly chemical finishes, chemicals are being specially formulated for ease of application and high quality finishing. In this paper, the latest developments in textile functional finishing of cotton fabrics are critically reviewed and precisely described. The use of plasma surface treatment is one of the easiest and the most efficient ways to improve post-finishing of cotton fabrics. In general, the active species produced in plasma carry high energy to promote surface functionalisation reactions causing a sputtering or etching effect on cotton fabrics. The altered surface characteristics can still retain inherent advantages of cotton substrates and enhance material properties by incorporating with a large variety of chemically active functional groups. Furthermore, it may be necessary to add a suitable co-reactant to enhance the performance of chemical finishing and minimise the side effects. Recently, some finishing formulations involving catalytic effects induced by co-reactants have been developed. The aim of this paper is to critically and comprehensively examine the existing developments in textiles functional finishing, with special focus on wrinkle-resistant, flame-retardant and anti-microbial finishing of cotton fabrics. In addition, further developments of these finishing processes are discussed.  相似文献   
993.
Ethanolamine and L ‐arginine treated wood flour were added to polyvinyl chloride (PVC) in order to improve the interphase between PVC and wood. The influence of the treatment on pH‐value changes and nitrogen fixation of the wood and mechanical properties of the composite were evaluated. The treatments changed the pH of wood from acidic to basic. The highest nitrogen fixation was measured for monoethanolamine and L ‐arginine treated wood flour at high concentrations. Tensile strength, elongation at break, and unnotched impact strength were improved by ethanolamine and L ‐arginine treatments considerably. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
994.
995.
The antiepileptic drug carbamazepine is one of the most abundant pharmaceuticals in the German aquatic environment. The effect of low carbamazepine concentrations (1-50 μg L−1) is discussed controversially, but ecotoxicological studies revealed reproduction toxicity, decreased enzymatic activity and bioaccumulation in different test organisms. Therefore, as a preventive step, an efficient and cost-effective technique for wastewater treatment plants is needed to stop the entry of pharmaceuticals into the aquatic environment. Cavitation, the formation, growth, and subsequent collapse of gas- or vapor-filled bubbles in fluids, was applied to solve this problem. The technique of Hydrodynamic-Acoustic-Cavitation was used showing high synergistic effect. Under optimized conditions carbamazepine (5 μg L−1) was transformed by pseudo-first order kinetics to an extent of >96% within 15 min (27% by hydrodynamic cavitation, 33% by acoustic cavitation). A synergistic effect of 63% based on the sum of the single methods was calculated. Carbamazepine concentrations were monitored by a sensitive and selective immunoassay and after 60 min no known metabolites were detectable by LC-MS/MS.  相似文献   
996.
This study was conducted with 35 Nellore beef cattle to determine the effect of supplementation of two levels and two copper sources (organic and inorganic) on metabolism of lipids and cholesterol of meat. The five treatments used were: Control: without copper supplementation, I10 or I40: 10 or 40 mg/kg DM (as Cu sulfate), O10 or O40: 10 or 40 mg/kg DM (as Cu proteinate). In general, the copper supplementation changed the fatty acid profile of meat (p<0.05), with a higher proportion of unsaturated fatty acids and reduction of saturated fatty acids. There was no effect of supplementation on blood cholesterol and triglycerides, however; in general, there was a reduction in cholesterol concentration in the L. dorsi (p<0.05) compared to the control treatment through the reduction (p<0.05) in the concentrations of GSH and GSH/GSSG ratio. The Cu supplementation did have an influence on metabolism of lipids. The production of healthier meat is beneficial to public health by reducing the risk of cardiovascular disease.  相似文献   
997.
998.
The type of sampling technique used to obtain food samples is fundamental to the success of microbiological analysis. Destructive and nondestructive techniques, such as tissue excision and rinsing, respectively, are widely employed in obtaining samples from chicken carcasses. In this study, four sampling techniques used for chicken carcasses were compared to evaluate their performances in the enumeration of hygiene indicator microorganisms. Sixty fresh chicken carcasses were sampled by rinsing, tissue excision, superficial swabbing, and skin excision. All samples were submitted for enumeration of mesophilic aerobes, Enterobacteriaceae, coliforms, and Escherichia coli. The results were compared to determine the statistical significance of differences and correlation (P < 0.05). Tissue excision provided the highest microbial counts compared with the other procedures, with significant differences obtained only for coliforms and E. coli (P < 0.05). Significant correlations (P < 0.05) were observed for all the sampling techniques evaluated for most of the hygiene indicators. Despite presenting a higher recovery ability, tissue excision did not present significant differences for microorganism enumeration compared with other nondestructive techniques, such as rinsing, indicating its adequacy for microbiological analysis of chicken carcasses.  相似文献   
999.
Recent experimental research into the adsorption of various cations on zeolite minerals has shown that nanopore channels of approximately 0.5 nm or less can create an effect whereby the adsorption of ions, especially those that are weakly hydrated, can be significantly enhanced. This enhanced adsorption occurs due to the removal of hydrating water molecules which in turn is caused by the nanopore channel's small size. A new adsorption model, called the nanopore inner-sphere enhancement (NISE) effect, has been proposed that explains this unusual adsorption mechanism. To further validate this model a series of nuclear magnetic resonance (NMR) spectroscopy studies is presented here. NMR spectra were gathered for Na adsorbed on three zeolite minerals of similar chemical composition but differing nanoporosities: zeolite Y with a limiting dimension of 0.76 nm, ZSM-5 with a limiting dimension of 0.51 nm, and mordenite with a limiting dimension of 0.26 nm. The NMR experiments validated the predictions of the NISE model whereby Na adsorbed via outer-sphere on zeolite Y, inner-sphere on ZSM-5, and a combination of both mechanisms on mordenite. The strong Na adsorption observed in these nanoporous minerals conflicts with sodium's general designation as a weak electrolyte.  相似文献   
1000.
A multispecies biofilm model is developed for simultaneous reduction of nitrate and perchlorate in the H(2)-based membrane biofilm reactor. The one-dimension model includes dual-substrate Monod kinetics for a steady-state biofilm with five solid and five dissolved components. The solid components are autotrophic denitrifying bacteria, autotrophic perchlorate-reducing bacteria, heterotrophic bacteria, inert biomass, and extracellular polymeric substances (EPS). The dissolved components are nitrate, perchlorate, hydrogen (H(2)), substrate-utilization-associated products, and biomass-associated products (BAP). The model explicitly considers four mechanisms involved in how three important operating conditions (H(2) pressure, nitrate loading, and perchlorate loading) affect nitrate and perchlorate removals: (1) competition for H(2), (2) promotion of PRB growth due to having two electron acceptors (nitrate and perchlorate), (3) competition between nitrate and perchlorate reduction for the same resources in the PRB: electrons and possibly reductase enzymes, and (4) competition for space in the biofilm. Two other special features are having H(2) delivered from the membrane substratum and solving directly for steady state using a novel three-step approach: finite-difference for approximating partial differential and/or integral equations, Newton-Raphson for solving nonlinear equations, and an iterative scheme to obtain the steady-state biofilm thickness. An example result illustrates the model's features.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号