首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12546篇
  免费   1037篇
  国内免费   9篇
电工技术   77篇
综合类   8篇
化学工业   5067篇
金属工艺   127篇
机械仪表   296篇
建筑科学   452篇
矿业工程   17篇
能源动力   319篇
轻工业   3144篇
水利工程   109篇
石油天然气   69篇
无线电   469篇
一般工业技术   1673篇
冶金工业   530篇
原子能技术   35篇
自动化技术   1200篇
  2024年   41篇
  2023年   179篇
  2022年   901篇
  2021年   1017篇
  2020年   413篇
  2019年   422篇
  2018年   474篇
  2017年   496篇
  2016年   541篇
  2015年   440篇
  2014年   574篇
  2013年   865篇
  2012年   826篇
  2011年   935篇
  2010年   711篇
  2009年   662篇
  2008年   604篇
  2007年   571篇
  2006年   440篇
  2005年   330篇
  2004年   280篇
  2003年   251篇
  2002年   234篇
  2001年   142篇
  2000年   94篇
  1999年   127篇
  1998年   106篇
  1997年   107篇
  1996年   101篇
  1995年   70篇
  1994年   58篇
  1993年   58篇
  1992年   64篇
  1991年   46篇
  1990年   38篇
  1989年   33篇
  1988年   33篇
  1987年   31篇
  1986年   40篇
  1985年   35篇
  1984年   26篇
  1983年   22篇
  1982年   15篇
  1981年   16篇
  1980年   19篇
  1979年   19篇
  1978年   20篇
  1977年   13篇
  1976年   7篇
  1975年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
The development of potent antitumor agents with a low toxicological profile against healthy cells is still one of the greatest challenges facing medicinal chemistry. In this context, the “mutual prodrug” approach has emerged as a potential tool to overcome undesirable physicochemical features and mitigate the side effects of approved drugs. Among broad-spectrum chemotherapeutics available for clinical use today, 5-fluorouracil (5-FU) is one of the most representative, also included in the World Health Organization model list of essential medicines. Unfortunately, severe side effects and drug resistance phenomena are still the primary limits and drawbacks in its clinical use. This review describes the progress made over the last ten years in developing 5-FU-based mutual prodrugs to improve the therapeutic profile and achieve targeted delivery to cancer tissues.  相似文献   
62.
As widely acknowledged, 40–50% of all melanoma patients harbour an activating BRAF mutation (mostly BRAF V600E). The identification of the RAS–RAF–MEK–ERK (MAP kinase) signalling pathway and its targeting has represented a valuable milestone for the advanced and, more recently, for the completely resected stage III and IV melanoma therapy management. However, despite progress in BRAF-mutant melanoma treatment, the two different approaches approved so far for metastatic disease, immunotherapy and BRAF+MEK inhibitors, allow a 5-year survival of no more than 60%, and most patients relapse during treatment due to acquired mechanisms of resistance. Deep insight into BRAF gene biology is fundamental to describe the acquired resistance mechanisms (primary and secondary) and to understand the molecular pathways that are now being investigated in preclinical and clinical studies with the aim of improving outcomes in BRAF-mutant patients.  相似文献   
63.
Klebsiella pneumoniae (Kp) is an opportunistic pathogen and the leading cause of healthcare-associated infections, mostly affecting subjects with compromised immune systems or suffering from concurrent bacterial infections. However, the dramatic increase in hypervirulent strains and the emergence of new multidrug-resistant clones resulted in Kp occurrence among previously healthy people and in increased morbidity and mortality, including neonatal sepsis and death across low- and middle-income countries. As a consequence, carbapenem-resistant and extended spectrum β-lactamase-producing Kp have been prioritized as a critical anti-microbial resistance threat by the World Health Organization and this has renewed the interest of the scientific community in developing a vaccine as well as treatments alternative to the now ineffective antibiotics. Capsule polysaccharide is the most important virulence factor of Kp and plays major roles in the pathogenesis but its high variability (more than 100 different types have been reported) makes the identification of a universal treatment or prevention strategy very challenging. However, less variable virulence factors such as the O-Antigen, outer membrane proteins as fimbriae and siderophores might also be key players in the fight against Kp infections. Here, we review elements of the current status of the epidemiology and the molecular pathogenesis of Kp and explore specific bacterial antigens as potential targets for both prophylactic and therapeutic solutions.  相似文献   
64.
Dementia with Lewy bodies (DLB) is one of the most common causes of dementia and belongs to the group of α-synucleinopathies. Due to its clinical overlap with other neurodegenerative disorders and its high clinical heterogeneity, the clinical differential diagnosis of DLB from other similar disorders is often difficult and it is frequently underdiagnosed. Moreover, its genetic etiology has been studied only recently due to the unavailability of large cohorts with a certain diagnosis and shows genetic heterogeneity with a rare contribution of pathogenic mutations and relatively common risk factors. The rapid increase in the reported cases of DLB highlights the need for an easy, efficient and accurate diagnosis of the disease in its initial stages in order to halt or delay the progression. The currently used diagnostic methods proposed by the International DLB consortium rely on a list of criteria that comprises both clinical observations and the use of biomarkers. Herein, we summarize the up-to-now reported knowledge on the genetic architecture of DLB and discuss the use of prodromal biomarkers as well as recent promising candidates from alternative body fluids and new imaging techniques.  相似文献   
65.
Atherothrombosis exposes vascular components to blood. Currently, new antithrombotic therapies are emerging. Herein we investigated thrombogenesis of human arteries with/without atherosclerosis, and the interaction of coagulation and vascular components, we and explored the anti-thrombogenic efficacy of blockade of the P2X purinoceptor 7 (P2X7). A confocal blood flow videomicroscopy system was performed on cryosections of internal mammary artery (IMA) or carotid plaque (CPL) determining/localizing platelets and fibrin. Blood from healthy donors elicited thrombi over arterial layers. Confocal microscopy associated thrombus with tissue presence of collagen type I, laminin, fibrin(ogen) and tissue factor (TF). The addition of antibodies blocking TF (aTF) or factor XI (aFXI) to blood significantly reduced fibrin deposition, variable platelet aggregation and aTF + aFXI almost abolished thrombus formation, showing synergy between coagulation pathways. A scarce effect of aTF over sub-endothelial regions, more abundant in tissue TF and bundles of laminin and collagen type I than deep intima, may suggest tissue thrombogenicity as molecular structure-related. Consistently with TF-related vascular function and expression of P2X7, the sections from CPL but not IMA tissue cultures pre-treated with the P2X7 antagonist A740003 demonstrated poor thrombogenesis in flow experiments. These data hint to local targeting studies on P2X7 modulation for atherothrombosis prevention/therapy.  相似文献   
66.
Immune checkpoint inhibitors (ICIs) have demonstrated remarkable efficacy in a growing number of malignancies. However, overcoming primary or secondary resistances is difficult due to pharmacokinetics issues and side effects associated with high systemic exposure. Local or regional expression of monoclonal antibodies (mAbs) using gene therapy vectors can alleviate this problem. In this work, we describe a high-capacity adenoviral vector (HCA-EFZP-aPDL1) equipped with a mifepristone-inducible system for the controlled expression of an anti-programmed death ligand 1 (PD-L1) blocking antibody. The vector was tested in an immune-competent mouse model of colorectal cancer based on implantation of MC38 cells. A single local administration of HCA-EFZP-aPDL1 in subcutaneous lesions led to a significant reduction in tumor growth with minimal release of the antibody in the circulation. When the vector was tested in a more stringent setting (rapidly progressing peritoneal carcinomatosis), the antitumor effect was marginal even in combination with other immune-stimulatory agents such as polyinosinic-polycytidylic acid (pI:C), blocking mAbs for T cell immunoglobulin, mucin-domain containing-3 (TIM-3) or agonistic mAbs for 4-1BB (CD137). In contrast, macrophage depletion by clodronate liposomes enhanced the efficacy of HCA-EFZP-aPDL1. These results highlight the importance of addressing macrophage-associated immunoregulatory mechanisms to overcome resistance to ICIs in the context of colorectal cancer.  相似文献   
67.
Extracellular vesicles (EV) are microparticles released in biological fluids by different cell types, both in physiological and pathological conditions. Owing to their ability to carry and transfer biomolecules, EV are mediators of cell-to-cell communication and are involved in the pathogenesis of several diseases. The ability of EV to modulate the immune system, the coagulation cascade, the angiogenetic process, and to drive endothelial dysfunction plays a crucial role in the pathophysiology of both autoimmune and renal diseases. Recent studies have demonstrated the involvement of EV in the control of renal homeostasis by acting as intercellular signaling molecules, mediators of inflammation and tissue regeneration. Moreover, circulating EV and urinary EV secreted by renal cells have been investigated as potential early biomarkers of renal injury. In the present review, we discuss the recent findings on the involvement of EV in autoimmunity and in renal intercellular communication. We focused on EV-mediated interaction between the immune system and the kidney in autoimmune diseases displaying common renal damage, such as antiphospholipid syndrome, systemic lupus erythematosus, thrombotic microangiopathy, and vasculitis. Although further studies are needed to extend our knowledge on EV in renal pathology, a deeper investigation of the impact of EV in kidney autoimmune diseases may also provide insight into renal biological processes. Furthermore, EV may represent promising biomarkers of renal diseases with potential future applications as diagnostic and therapeutic tools.  相似文献   
68.
In the present work, we performed immunochemical studies of LPS, especially the O-specific polysaccharide (O-PS) of Aeromonas veronii bv. sobria strain K133, which was isolated from the kidney of carp (Cyprinus carpio L.) during an outbreak of motile aeromonad infection/motile aeromonad septicemia (MAI/MAS) on a Polish fish farm. The structural characterization of the O-PS, which was obtained by mild acid degradation of the LPS, was performed with chemical methods, MALDI-TOF mass spectrometry, and 1H and 13C NMR spectroscopy. It was revealed that the O-PS has a unique composition of a linear tetrasaccharide repeating unit and contains a rarely occurring sugar 2,4-diamino-2,4,6-trideoxy-D-glucose (bacillosamine), which may determine the specificity of the serogroup. Western blotting and ELISA confirmed that A. veronii bv. sobria strain K133 belongs to the new serogroup PGO1, which is one of the most commonly represented immunotypes among carp and trout isolates of Aeromonas sp. in Polish aquacultures. Considering the increase in the MAI/MAS incidences and their impact on freshwater species, also with economic importance, and in the absence of an effective immunoprophylaxis, studies of the Aeromonas O-antigens are relevant in the light of epidemiological data and monitoring emergent pathogens representing unknown antigenic variants and serotypes.  相似文献   
69.
Toll-like receptor (TLR) signaling plays a critical role in the induction and progression of autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematous, experimental autoimmune encephalitis, type 1 diabetes mellitus and neurodegenerative diseases. Deciphering antigen recognition by antibodies provides insights and defines the mechanism of action into the progression of immune responses. Multiple strategies, including phage display and hybridoma technologies, have been used to enhance the affinity of antibodies for their respective epitopes. Here, we investigate the TLR4 antibody-binding epitope by computational-driven approach. We demonstrate that three important residues, i.e., Y328, N329, and K349 of TLR4 antibody binding epitope identified upon in silico mutagenesis, affect not only the interaction and binding affinity of antibody but also influence the structural integrity of TLR4. Furthermore, we predict a novel epitope at the TLR4-MD2 interface which can be targeted and explored for therapeutic antibodies and small molecules. This technique provides an in-depth insight into antibody–antigen interactions at the resolution and will be beneficial for the development of new monoclonal antibodies. Computational techniques, if coupled with experimental methods, will shorten the duration of rational design and development of antibody therapeutics.  相似文献   
70.
Cardiac connexins (Cxs) are proteins responsible for proper heart function. They form gap junctions that mediate electrical and chemical signalling throughout the cardiac system, and thus enable a synchronized contraction. Connexins can also individually participate in many signal transduction pathways, interacting with intracellular proteins at various cellular compartments. Altered connexin expression and localization have been described in diseased myocardium and the aim of this study is to assess the involvement of Cx43, Cx26, and some related molecules in ponatinib-induced cardiac toxicity. Ponatinib is a new multi-tyrosine kinase inhibitor that has been successfully used against human malignancies, but its cardiotoxicity remains worrisome. Therefore, understanding its signaling mechanism is important to adopt potential anti cardiac damage strategies. Our experiments were performed on hearts from male and female mice treated with ponatinib and with ponatinib plus siRNA-Notch1 by using immunofluorescence, Western blotting, and proteomic analyses. The altered cardiac function and the change in Cxs expression observed in mice after ponatinib treatment, were results dependent on the Notch1 pathway and sex. Females showed a lower susceptibility to ponatinib than males. The downmodulation of cardiac Cx43, Cx26 and miR-122, high pS368-Cx43 phosphorylation, cell viability and survival activation could represent some of the female adaptative/compensatory reactions to ponatinib cardiotoxicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号