首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   8篇
  国内免费   1篇
化学工业   71篇
金属工艺   2篇
机械仪表   3篇
建筑科学   1篇
能源动力   1篇
轻工业   21篇
水利工程   2篇
石油天然气   2篇
无线电   9篇
一般工业技术   19篇
冶金工业   12篇
自动化技术   27篇
  2022年   16篇
  2021年   25篇
  2020年   9篇
  2019年   7篇
  2018年   5篇
  2017年   10篇
  2016年   12篇
  2015年   10篇
  2014年   5篇
  2013年   9篇
  2012年   5篇
  2011年   5篇
  2010年   10篇
  2009年   6篇
  2008年   8篇
  2007年   2篇
  2006年   5篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1993年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有170条查询结果,搜索用时 15 毫秒
11.
Polymer nanocomposites based on poly(vinyl alcohol) (PVA)/starch blend and graphene were prepared by solution mixing and casting. Glycerol was used as a plasticizer and added in the starch dispersion. The uniform dispersion of graphene in water was achieved by using an Ultrasonicator Probe. The composites were characterized by FTIR, tensile properties, X‐ray diffraction (XRD), thermal analysis, and FE‐SEM studies. FTIR studies indicated probable hydrogen bonding interaction between the oxygen containing groups on graphene surface and the –OH groups in PVA and starch. Mechanical properties results showed that the optimum loading of graphene was 0.5 wt % in the blend. XRD studies indicated uniform dispersion of graphene in PVA/starch matrix upto 0.5 wt % loadings and further increase caused agglomeration. Thermal studies showed that the thermal stability of PVA increased and the crystallinity decreased in the presence of starch and graphene. FE‐SEM studies showed that incorporation of graphene increased the ductility of the composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41827.  相似文献   
12.
A general, mild, and convenient method has been developed for the synthesis of various N‐substituted and N, N‐disubstituted sulfonamides, as a class of sulfa drugs, from the corresponding amines and p‐toluene sulfonyl chloride in the presence of readily available crosslinked poly(4‐vinylpyridine) as a catalyst, base or polymeric substrates. The use of polymeric catalyst simplifies routine sulfonylation of amines because it eliminates the traditional purification. The polymer can be removed quantitatively and it can be regenerated and reused for several cycles without losing its activity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
13.
Electrically and thermally conductive polymer composites offer great possibilities in various electronic fields because of their low weight and ease of processing. This paper addresses the curing behaviour and network properties of conducting multi‐walled carbon nanotube (MWCNT)‐reinforced natural rubber (NR) nanocomposites, emphasizing the sensing and diffusion performances. NR/MWCNT composites were prepared following a special master batch technique which allows the appropriate distribution of nanotubes within the elastomer. The sensing responses of the composites towards solvents were observed as variations in electrical resistance. Thermal resistance and glass transition behaviour were examined and correlated with the swelling measurements as evidence for solvent sensing. An optimum level of 3 phr of MWCNTs is understood to lead to the best properties for the NR/MWCNT composites. Finally, the structural morphology and interfacial interactions were found to have correlations with cure reactions, glass transition temperatures and sensing responses of all compositions. © 2017 Society of Chemical Industry  相似文献   
14.
In the present study, fumed silica (SiO2) nanoparticle reinforced poly(vinyl alcohol) (PVA) and poly(vinylpyrrolidone) (PVP) blend nanocomposite films were prepared via a simple solution‐blending technique. Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible spectroscopy (UV–vis), X‐ray diffraction (XRD), and scanning electron microscopy (SEM) were employed to elucidate the successful incorporation of SiO2 nanoparticles in the PVA/PVP blend matrix. A thermogravimetric analyzer was used to evaluate the thermal stability of the nanocomposites. The dielectric properties such as dielectric constant (?) and dielectric loss (tan δ) of the PVA/PVP/SiO2 nanocomposite films were evaluated in the broadband frequency range of 10?2 Hz to 20 MHz and for temperatures in the range 40–150 °C. The FTIR and UV–vis spectroscopy results implied the presence of hydrogen bonding interaction between SiO2 and the PVA/PVP blend matrix. The XRD and SEM results revealed that SiO2 nanoparticles were uniformly dispersed in the PVA/PVP blend matrix. The dielectric property analysis revealed that the dielectric constant values of the nanocomposites are higher than those of PVA/PVP blends. The maximum dielectric constant and the dielectric loss were 125 (10?2 Hz, 150 °C) and 1.1 (10?2 Hz, 70 °C), respectively, for PVA/PVP/SiO2 nanocomposites with 25 wt % SiO2 content. These results enable the preparation of dielectric nanocomposites using a facile solution‐casting method that exhibit the desirable dielectric performance for flexible organic electronics. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44427.  相似文献   
15.
Microalgae biomass has great potential for being used as feedstock for the sustainable production of biodiesel, as it is able to produce 7–31 times more oil than the top terrestrial crop. It is a green alternative to the currently utilized energy sources as it can reduce CO, CO2 and hydrocarbon emissions. However, downstream processing costs for the dilute biomass are a major challenge. Foam flotation has been recently investigated for the recovery of microalgae cells from dilute liquid suspensions. A number of variables on the effectiveness of foam flotation for microalgae have been investigated, which include surfactant type and concentration, cell concentration, pH, hydrophobicity, time, growth stage, flow rate, ionic strength, alkalinity, temperature, bubble size, and column size. It appears to be a promising method for the recovery of algae for biofuel production, as a result of the high removal recoveries, good enrichment ratios, ability to process large volumes of biomass, and its ease of operation. However, literature on this subject is scarce, and there are research gaps that should be investigated including characterization of microalgae cells and impact on foam separation and the effect of surfactant as a treatment prior to lipid extraction.  相似文献   
16.
The recent surge in graphene research has stimulated interest in the investigation of various two-dimensional (2D) nanomaterials, including 2D boron nitride (BN) nanostructures. Among these, hexagonal boron nitride nanosheets (h-BNNs; also known as white graphene, as their structure is similar to that of graphene) have emerged as potential nanofillers for preparing thermally conductive composites. In this work, hexagonal boron nitride nanoparticles (h-BNNPs) approximately 70 nm in size were incorporated into a polyvinylidene fluoride (PVDF) matrix with different loadings (0–25 wt.%). The PVDF/h-BNNP nanocomposites were prepared by a solution blending technique and characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), polarized optical microscopy (POM) and scanning electron microscopy (SEM). In addition, the thermal conductivity and dielectric properties of the nanocomposites were investigated. The incorporation of h-BNNPs in the PVDF matrix resulted in enhanced thermal conductivity. The highest value, obtained at 25 wt.% h-BNNP loading, was 2.33 W/mK, which was five times that of the neat PVDF (0.41 W/mK). The thermal enhancement factor (TEF) at 5 wt.% h-BNNP loading was 78%, increasing to 468% at 25 wt.% h-BNNP loading. The maximum dielectric constant of approximately 36.37 (50Hz, 150 °C) was obtained at 25 wt.% h-BNNP loading, which was three times that of neat PVDF (11.94) at the same frequency and temperature. The aforementioned results suggest that these multifunctional and high-performance nanocomposites hold great promise for application in electronic encapsulation.  相似文献   
17.
Latex-based coatings for protection of tree seedlings against pest insect feeding are evaluated with respect to surface-, mechanical-, and release properties and antifeedant activity. The latex dispersion Eudragit copolymer (EC) was used to form the coatings, 2,6-di-tert-butyl-4-methylphenol (BHT) and cis-dihydropinidine (Alk) as antifeedants, and a thickener and a alkylglucoside based nonionic surfactant were used as additives to optimize the release- and mechanical properties of coatings. Coating characterization was performed with respect to surface morphology (atomic force microscopy, AFM) and surface wetting (contact angle), as well as to mechanical (tensile stress- and tensile strain at break) properties. Surface smoothness and wettability as well as elasticity increased with addition of the surfactant. The optimized coatings were found to be elastic and water resistant at 3–6 wt.% of BHT and 3 wt.% of surfactant. BHT was released into SDS/water at very low rates. Several formulations of BHT and Alk were efficient in preventing the feeding on conifer bark by a pine insect, Hylobius abietis both in laboratory (no-choice) and in field (3 months) tests.  相似文献   
18.
19.
Background: Non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. Chemotherapy, the treatment of choice in non-operable cases, achieves a dismal success rate, raising the need for new therapeutic options. In about 25% of NSCLC, the activating mutations of the KRAS oncogene define a subclass that cannot benefit from tyrosine kinase inhibitors (TKIs). The tumor suppressor miR-16 is downregulated in many human cancers, including NSCLC. The main objectives of this study were to evaluate miR-16 treatment to restore the TKI sensitivity and compare its efficacy to MEK inhibitors in KRAS-mutated NSCLC. Methods: We performed in vitro and in vivo studies to investigate whether miR-16 could be exploited to overcome TKI resistance in KRAS-mutated NSCLC. We had three goals: first, to identify the KRAS downstream effectors targeted by mir-16, second, to study the effects of miR-16 restoration on TKI resistance in KRAS-mutated NSCLC both in vitro and in vivo, and finally, to compare miR-16 and the MEK inhibitor selumetinib in reducing KRAS-mutated NSCLC growth in vitro and in vivo. Results: We demonstrated that miR-16 directly targets the three KRAS downstream effectors MAPK3, MAP2K1, and CRAF in NSCLC, restoring the sensitivity to erlotinib in KRAS-mutated NSCLC both in vitro and in vivo. We also provided evidence that the miR-16–erlotinib regimen is more effective than the selumetinib–erlotinib combination in KRAS-mutated NSCLC. Conclusions: Our findings support the biological preclinical rationale for using miR-16 in combination with erlotinib in the treatment of NSCLC with KRAS-activating mutations.  相似文献   
20.
Solvent extraction using an extractant/diluent system was evaluated for the recovery of shikimic and quinic acids. Tridodecylamine (TDA) was used as the extractant, and 1-heptanol as the diluent. TDA complexes with the acid resulting in an acid-amine complex, which is solvated by the alcohol diluent. In back extraction, oleic acid was added to the organic phase as a displacer. Oleic acid competitively displaces the carboxylic acid in the acid-amine complex, thus forming a displacer-amine complex. The distribution coefficient for back extraction by competitive displacement increased by at least an order of magnitude depending on the mole to mole ratio of oleic acid to TDA

Based on results from batch extraction experiments, a mass-action analysis was introduced for modeling forward and back extraction. The mass-action analysis served as a tool for understanding the mechanism of the extraction process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号