首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1139篇
  免费   104篇
  国内免费   4篇
电工技术   8篇
化学工业   414篇
金属工艺   26篇
机械仪表   34篇
建筑科学   31篇
能源动力   73篇
轻工业   185篇
水利工程   25篇
石油天然气   12篇
无线电   83篇
一般工业技术   163篇
冶金工业   20篇
原子能技术   5篇
自动化技术   168篇
  2024年   5篇
  2023年   24篇
  2022年   56篇
  2021年   117篇
  2020年   105篇
  2019年   87篇
  2018年   115篇
  2017年   110篇
  2016年   89篇
  2015年   45篇
  2014年   94篇
  2013年   112篇
  2012年   79篇
  2011年   62篇
  2010年   47篇
  2009年   30篇
  2008年   23篇
  2007年   13篇
  2006年   7篇
  2005年   8篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
排序方式: 共有1247条查询结果,搜索用时 15 毫秒
51.
The incorporation of carbon nanofiber (CNF) into glass fiber (GF) composites is a potential route to extend polymer composite service‐life and enhance mechanical properties. Under nonstatic conditions, only limited information concerning water uptake and contaminant release properties of nanocomposite materials is currently available. Polyester composites containing GF and oxidized CNF were immersed in water for 30 days under nominal pressure at 23 °C, below the polymer's glass‐transition temperature. Water was analyzed and changed every three days to simulate water chemistry regeneration similar to exposures in flowing systems. Composites with oxidized CNF had greater water sorption capacity and leaching rates than CNF‐free composites. The total mass of organic contaminant released correlated with the amount of water sorbed by each composite (r2 = 0.91), although CNF dispersion was found to vary greatly within composites. The greatest and least contaminant release rates were found for the polyester‐CNF and the polyester‐GF composites, respectively. While volatile aromatic resin solvents and stabilizer compounds were detected, their concentrations declined over the 30 day exposure period. We hypothesize that the hydrophilic nature of the oxidized CNF increased the water sorption capacity of the polyester composites. Additional studies are warranted that examine the impact of this phenomenon on composite mechanical and long‐term durability properties. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43724.  相似文献   
52.
53.
Mesoporous silica materials are attractive materials for immobilizing enzymes because of their well-ordered structures, large surface area are pore volume. Diffusion of large enzyme molecules such as porcine pancreatic lipase (PPL) through the lengthy channels of MPS takes place too slowly. Therefore, the squat of the enzyme at the pore mouth entrance, actually makes the rest of the channel useless. In this study, to overcome this problem, synthesis parameters of SBA-15 were changed, since along with pore diameter increasing, the mesochannel length becomes shorter. The main point to obtain a well-ordered 2D hexagonal pore structure was the pre-hydrolysis of tetraethyl orthosilicate (TEOS) before the addition of 1,3,5-trimethyl benzene as a micelle swelling agent. Due to the strong effect of zirconium in changing the morphology of SBA-15 particles, we modified SBA-15 in the presence of a small amount of ZrOCl2 in the synthesis solution under acidic conditions. As a result, mesochannel length of SBA-15-Zr was shortened from 600 to <200 nm. The morphology of mesoporous silica was also changed from rod-like to platelet, because of the accelerating effect of Zr(IV) on the self-assembly rate of P123 and TEOS condensation. Characteristic results conducted by low angle XRD, high resolution transmission electron microscopy and nitrogen adsorption, confirmed tuning effect of Zr(IV) in SBA-15. Furthermore, it was shown that the number of pore entrances increases with decreasing the length of SBA-15 mesochannels, leading to obvious improvement of enzyme uptake. PPL has been successfully immobilized in the mesoporous channels of SBA-15-Zr. The total amount of lipase adsorbed on the mesoporous SBA-15-Zr was measured by thermal gravimetric analysis. The largest PPL adsorption capacity was 784 mg/g belonging to the SBA-15-Zr with the length of 150 nm and the mean pore size diameter of 9.22 nm.  相似文献   
54.
Because of the major limitations in drinking water resources, the industries need to use unprocessed water sources for their cooling systems; these water resources contain major amount of hardening cations. So, mineral scales are formed in cooling water systems during the time and cause major problems. The use of green anti-scaling materials such as carboxylic acids is considered due to their low risks of environmental pollution. In the present work, the scale inhibition performance of tartaric acid as a green organic material was evaluated. Chemical screening tests, cathodic and anodic voltammetry measurements and electrochemical impedance spectroscopy (EIS), field emission scanning electron microscopy (FESEM), energy-dispersive x-ray and x-ray diffraction, were used for the evaluation of the scale inhibition performance. The results showed that tartaric acid can prevent calcium carbonate precipitation significantly. The hard water solution with 2.0 mM of tartaric acid indicated the highest scale inhibition efficiency (ca. 68%). The voltammetry, EIS and FESEM results verified that tartaric acid can form smooth and homogeneous film on steel surface through formation of Fe(III)-tartrate complexes and retard the local precipitation of calcium carbonate deposits.  相似文献   
55.
This study aims to investigate how the predeposition machining processes such as magnetic grinding, turning machining, and wire electrical discharge machining can influence the surface properties including electrochemical and tribological behavior of TiCrN nanostructured coating applied on Mo40 steel substrate. A physical vapor deposition technique using cathodic arc evaporation was used to apply the coating. The crystallographic phases and the microstructure of the coating were studied by X-ray diffraction and scanning electron microscope, respectively. Rockwell-C, electrochemical impedance spectroscopy and potentiodynamic polarization, and pin-on-disk wear tests were employed to evaluate the adhesion strength, corrosion behavior, and tribological property of specimens, respectively. The electrochemical results after 24 h of exposure to 3.5 wt% NaCl solution showed that TiCrN coating pretreated with a turning process with polarization resistance of about 3525.32 Ω.cm2 had the best corrosion resistance among all specimens. This was because of the improvement of the smoothness, surface quality, and adhesion after the turning process. On the other, the friction coefficient of the grounded sample is less than that of other ones. This is probably due to its higher adhesion strength and higher surface smoothness.  相似文献   
56.
This paper proposes a vibration-based fault-diagnosis method for mechanical parts. This method, after algorithm development, only requires a single inexpensive test to inspect the part which could take as short as half a second. The algorithm is developed in three major stages, (i) exciting specimens without or with known faults using a controlled force and recording acceleration of a single point for a short time (ii) finding a signature for each faulty specimen, using Fourier transform and statistical analysis. (iii) Developing a multi-layer perceptron, as a mathematical model, using the results of stage (ii). The elements of a part signature are the inputs to the model. The location (and possibly size and shape factor) of the fault is model output. Stage (i) can be performed experimentally or alternatively with a validated FEM, one experiment or simulation per specimen. The proposed technique was examined to locate (isolate) a fault on an automobile cylinder head. The presented accuracy is considerable, and the data collected at fairly low frequency range (below 1200 Hz) were found to be sufficient for this technique. In the case study of this paper, possible fault locations are on a line; as a result, fault location has one dimension. It is shown that the technique can be extended to higher dimensions.  相似文献   
57.
Chemical vapor deposition of poly(3‐methylthiophene) and poly (3‐hexylthiophene) as conductive polymers on the surface of polyester fabrics was successfully obtained. Fourier transform infrared spectroscopy confirmed the formation of polymers on surface of fabrics (the fingerprint of polythiophenes, υ 600–1500 cm?1). The uniformity of deposition and nanoparticles (average size of 60 nm) were proved with scanning electron microscopy. Electrochemical impedance spectroscopy showed that P3HT‐coated samples offer higher conductivity in compared to P3MT‐coated samples. The impedance modulus of P3HT‐coated samples was lowered nine times to that of row materials and reached to c8000 Ω. The samples have also shown electrochromic properties under electrical current, changing its color from yellowish green at 0 V to dark green at +12 V for poly (3‐hexylthiophene) samples and from brown at 0 V to red at +12 V for poly(3‐methylthiophene)‐coated fabrics (V = 0 V, λ = 450 nm; V = 12 V, λ = 650 nm). © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40673.  相似文献   
58.
The number of active sites on the surface of carbon catalysts is an important factor in determining their activity in the decomposition of methane. Although several studies have been performed to identify the nature of these sites, no method has been established to estimate their number. A method is presented to estimate this value, and its effect on hydrogen production is evaluated, along with that of temperature and residence time. For this purpose, the thermocatalytic decomposition of methane is modeled with the inclusion of the number of active sites of the catalyst in the kinetics. The results of the model indicate the high influence of variations of small residence times in this process, and the reduction of this effect at high temperatures. Also, the effect of the number of surface sites is shown to be more prominent at low residence times and temperatures. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2228–2234, 2014  相似文献   
59.
Feldspar/titanium dioxide/chitosan hybrid, a photoactive biocompatible adsorbent for anionic dyes, was synthesized, characterized, and successfully tested. The adsorbent characterization, pH role, adsorbent dose effect, equilibrium data, kinetic plats, and thermodynamic parameters are reported. The point of zero charge for the hybrid was measured to be 8.3, and the most favorable pH range for the adsorption process was found to be below this pH value. The adsorption equilibrium study demonstrated that the Freundlich model was best fitted to the experimental data. Without UV light exposure, the prepared adsorbent adsorbed 72 mg of Acid Black 1 (AB1)/g of sorbent (86% removal) from a 100‐mL solution with an initial dye concentration of 50 mg/L, whereas UV irradiation resulted in an increase in the elimination of AB1 dye (97% removal). The kinetic data was depicted well by the pseudo‐second‐order model. The thermodynamic parameters indicated that the reaction between the hybrid and the dye was exothermic and also spontaneous at lower temperatures. In the batch desorption process, several aqueous solutions adjusted to different pH values were tested, and the best desorption performance (90% desorption) was achieved at pH 11. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40247.  相似文献   
60.
In this study, rheological, crystal structure, barrier, and mechanical properties of polyamide 6 (PA6), poly(m‐xylene adipamide) (MXD6) and their in situ polymerized nanocomposites with 4 wt % clay were studied. The extent of intercalation and exfoliation as well as type of crystals, crystallinity, and thermal transitions were investigated using X‐ray diffraction (XRD) and differential scanning calorimetry (DSC), respectively. Dynamic rheological measurements revealed that incorporation of nanoclay significantly increases complex viscosity of MXD6 nanocomposites at low frequencies, which was related to the formation of a nanoclay network and exchange reaction between MXD6 chains. The comparative study of dynamic characteristics (G′ (ω) and G″ (ω)) for aliphatic and aromatic polyamide nanocomposites with their neat resins as well as the relaxation spectra for both polymer systems confirmed the possibility of the aforementioned phenomena. Although, the crystallinity of MXD6 films was lower as compared to PA6 films, the permeability to oxygen was more than 5 times better for the former. Incorporating 4 wt% clay enhanced the barrier property, tensile modulus, and yield stress of PA6 and MXD6 nanocomposite films in both machine and transverse directions without sacrificing much puncture and tear resistances. The PA6‐based films showed higher tear and puncture strength as compared to MXD6 films. POLYM. ENG. SCI., 54:2617–2631, 2014. © 2013 Society of Plastics Engineers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号