首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1302篇
  免费   62篇
  国内免费   3篇
电工技术   75篇
综合类   2篇
化学工业   391篇
金属工艺   30篇
机械仪表   41篇
建筑科学   32篇
能源动力   46篇
轻工业   100篇
水利工程   3篇
无线电   74篇
一般工业技术   273篇
冶金工业   101篇
原子能技术   90篇
自动化技术   109篇
  2023年   8篇
  2022年   29篇
  2021年   38篇
  2020年   21篇
  2019年   30篇
  2018年   24篇
  2017年   35篇
  2016年   38篇
  2015年   38篇
  2014年   34篇
  2013年   82篇
  2012年   54篇
  2011年   84篇
  2010年   65篇
  2009年   61篇
  2008年   76篇
  2007年   70篇
  2006年   51篇
  2005年   42篇
  2004年   49篇
  2003年   35篇
  2002年   42篇
  2001年   29篇
  2000年   26篇
  1999年   24篇
  1998年   50篇
  1997年   31篇
  1996年   22篇
  1995年   29篇
  1994年   13篇
  1993年   17篇
  1992年   11篇
  1991年   6篇
  1990年   9篇
  1989年   10篇
  1988年   12篇
  1987年   3篇
  1986年   9篇
  1985年   9篇
  1984年   9篇
  1983年   4篇
  1982年   3篇
  1981年   4篇
  1980年   7篇
  1978年   4篇
  1977年   4篇
  1976年   4篇
  1975年   4篇
  1973年   2篇
  1969年   2篇
排序方式: 共有1367条查询结果,搜索用时 15 毫秒
51.
Tunnel electroresistance in ferroelectric tunnel junctions (FTJs) has attracted considerable interest, because of a promising application to nonvolatile memories. Development of ferroelectric thin‐film devices requires atomic‐scale band‐structure engineering based on depolarization‐field effects at interfaces. By using FTJs consisting of ultrathin layers of the prototypical ferroelectric BaTiO3, it is demonstrated that the surface termination of the ferroelectric in contact with a simple‐metal electrode critically affects properties of electroresistance. BaTiO3 barrier‐layers with TiO2 or BaO terminations show opposing relationships between the polarization direction and the resistance state. The resistance‐switching ratio in the junctions can be remarkably enhanced up to 105% at room temperature, by artificially controlling the fraction of BaO termination. These results are explained in terms of the termination dependence of the depolarization field that is generated by a dead layer and imperfect charge screening. The findings on the mechanism of tunnel electroresistance should lead to performance improvements in the devices based on nanoscale ferroelectrics.  相似文献   
52.
Solid waste management is a serious problem over the world. Therefore, reduction, re-use and recycling of waste have become major issues in recent days. Gypsum waste plasterboard is considered one example of these waste materials. This study evaluates the use of recycled bassanite, which is derived from gypsum waste plasterboard, to enhance the performance of two types of cohesion-less soil. Recycled bassanite was utilized as a stabilizing agent to improve both compressive and splitting strengths of the tested soil. The effect of bassanite content, soil type, water content and curing time were investigated to explore the behavior of treated soil with recycled bassanite. Test results showed that increase of bassanite content is associated with increase in optimal moisture content, while no significant increase in the dry unit weight was observed. Both compressive and splitting tensile strengths enhanced with the additives of recycled bassanite. The increase of bassanite content had a more significant effect on the compressive strength compared with the effect on tensile strength. The use of recycled bassanite to enhance the strength of sandy soil had a more significant effect compared with silty soil. The effect of curing time on the strength of treated samples was more significant in early curing ages compared with late curing ages. The strength decreased significantly in case of stabilized samples prepared with water content at the wet-side of the compaction curve. However, insignificant decrease in the strength of the stabilized sample was detected with moisture content at the dry-side of compaction curve. This research meets the challenges of our society to reduce the quantities of gypsum wastes, producing useful material from waste materials that will help to a sustainable society.  相似文献   
53.
The progression of chronic liver disease differs by etiology. The aim of this study was to elucidate the difference in disease progression between chronic hepatitis C (CHC) and nonalcoholic fatty liver disease (NAFLD) by means of fibrosis markers, liver function, and hepatic tissue blood flow (TBF). Xenon computed tomography (Xe-CT) was performed in 139 patients with NAFLD and 152 patients with CHC (including liver cirrhosis (LC)). The cutoff values for fibrosis markers were compared between NAFLD and CHC, and correlations between hepatic TBF and liver function tests were examined at each fibrosis stage. The cutoff values for detection of the advanced fibrosis stage were lower in NAFLD than in CHC. Although portal venous TBF (PVTBF) correlated with liver function tests, PVTBF in initial LC caused by nonalcoholic steatohepatitis (NASH-LC) was significantly lower than that in hepatitis C virus (C-LC) (p = 0.014). Conversely, the liver function tests in NASH-LC were higher than those in C-LC (p < 0.05). It is important to recognize the difference between NAFLD and CHC. We concluded that changes in hepatic blood flow occurred during the earliest stage of hepatic fibrosis in patients with NAFLD; therefore, patients with NAFLD need to be followed carefully.  相似文献   
54.
The effects of visible light, from short to long wavelengths, on the retina were investigated functionally and histologically. The left eyes of Sprague–Dawley albino rats (6-weeks old, n = 6 for each wavelength) were exposed to seven narrow-band wavelengths (central wavelengths, 421, 441, 459, 501, 541, 581, and 615 nm) with bandwidths of 16 to 29 nm (half bandwidth, ±8–14.5 nm) using a xenon lamp source with bandpass filters at the retinal radiant exposures of 340 and 680 J/cm2. The right unexposed eyes served as controls. Seven days after exposure, flash electroretinograms (ERGs) were recorded, and the outer nuclear layer (ONL) thickness was measured. Compared to the unexposed eyes, significant reductions in the a- and b-wave ERG amplitudes were seen in eyes exposed to 460-nm or shorter wavelengths of light. The ONL thickness near the optic nerve head also tended to decrease with exposure to shorter wavelengths. The decreased ERG amplitudes and ONL thicknesses were most prominent in eyes exposed to 420-nm light at both radiant exposures. When the wavelengths were the same, the higher the amount of radiant exposure and the stronger the damage. Compared to the unexposed eyes, the a- and b-waves did not decrease significantly in eyes exposed to 500-nm or longer wavelength light. The results indicate that the retinal damage induced by visible light observed in albino rats depends on the wavelength and energy level of the exposed light.  相似文献   
55.
To evaluate the oxidation behavior of high-burnup advanced fuel cladding tubes in high-temperature steam, laboratory-scale isothermal oxidation tests were conducted using the following advanced fuel cladding tubes with burnups of up to 85 GWd/t: M-MDATM, low-tin ZIRLOTM, M5®, and Zircaloy-2 (LK3). These oxidation tests were performed in steam-flowing conditions at temperatures ranging from 1173 to 1473 K for durations between 120 and 4000 s, and the oxidation kinetics was evaluated. The oxidation kinetics of the high-burnup advanced fuel cladding tube specimens estimated by assuming the parabolic rate law was comparable to or slower than that of the unirradiated Zircaloy-4 cladding tube specimens reported in a previous study. It is considered that the protective e?ect of the corrosion layer hindered oxidation. Furthermore, no increase in the oxidation kinetics because of the pre-hydriding was observed. The onset times of the breakaway oxidations of these cladding tube specimens were comparable to those of the unirradiated Zircaloy-4 cladding tubes reported in previous studies. Therefore, it is considered that the burnup extension up to 85 GWd/t and the use of the advanced fuel cladding tubes do not significantly increase the oxidation kinetics and do not significantly reduce the onset time of the breakaway oxidation.  相似文献   
56.
Metallurgical and Materials Transactions B - Normal spectral emissivity of molten Cu-Fe alloy with different compositions was measured at the wavelength of 807&nbsp;nm using an electromagnetic...  相似文献   
57.
High-toughness and high-strength lead zirconate titanate (PZT) composites that contain fine silver particles were successfully fabricated at low sintering temperatures. Addition of silver to a PZT matrix did not result in unwanted reaction phases; however, some silver diffused toward the perovskite crystal structure. A small quantity of silver accelerated the sinterability of the PZT composites. The formation of oxygen vacancies due to the partial substitution of silver appeared to enhance the sinterability of the PZT. Fracture toughness depended on the size and degree of sphericity of the silver particles, and SEM observations on crack propagation suggested that the toughening mechanism in the PZT/Ag composites involves crack bridging resulting from the ductile behavior of silver particles. It is proposed that high fracture strength in PZT/1 to 5 vol% Ag composites results from the relaxation of transformation-induced internal stress by the silver particles.  相似文献   
58.
Gas adsorption rates of H2, CO2, and H2‐CO2 gas mixture (H2/CO2 = 3.4) with tetra‐n‐butyl ammonium salt (bromide, chloride, and fluoride) semi‐clathrate hydrate particles were measured at 269 K to assess their properties for gas separation. Equilibrium gas occupancies in the S‐cages of the particles were in order of (high to low) for hexagonal structure‐I, tetragonal structure‐I, and superlattice of cubic structure‐I structures with the maximum fractional occupancy by CO2 being about 40%. The CO2 diffusion rate depended on the anion size of the salt, which is attributed to distortion of the S‐cage that is close to the molecular size of CO2. Simulations of semi‐clathrate hydrate particles with theory showed that H2/CO2 selectivities could be as high as 36 (3.0 mol% TBAF) and that selectivities for an ideal membrane (3.3 mol% TBAF) could be >100 (269 K, 0.3–4.5 MPa). Semi‐clathrate hydrates have wide application as separation media for gas mixtures. © 2014 American Institute of Chemical Engineers AIChE J, 61: 992–1003, 2015  相似文献   
59.
High tensile strength fibers of poly[(R)‐3‐hydroxybutyrate‐co‐(R)‐3‐hydroxyhexanoate] [P(3HB‐co‐3HH)], a type of microbial polyesters, were processed by one‐step and two‐step cold‐drawn method with intermediate annealing. Thermal degradation behaviors were characterized by differential scanning calorimeter and gel permeation chromatography measurements. Thermal analyses were revealed that molecular weights decreased drastically within melting time at a few minute. One‐step cold‐drawn fiber with drawing ratio of 10 showed tensile strength of 281 MPa, while tensile strength of as‐spun fiber was 78 MPa. When two‐step drawing was applied for P(3HB‐co‐3HH) fibers, the tensile strength was led to 420 MPa. Furthermore, the optimization of intermediate annealing condition leads to enhance the tensile strength at 552 MPa of P(3HB‐co‐3HH) fiber. Wide‐angel X‐ray diffraction measurements of these fibers suggest that the fibers with high tensile strength include much amount of the planer‐zigzag conformation (β‐form) as molecular conformation together with 21 helix conformation (α‐form). © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41258.  相似文献   
60.
Z‐isomers of lycopene exhibit higher bioavailability and antioxidant capacity than those of the all‐E‐isomer. Therefore, it is important to develop an efficient and environmentally friendly procedure for Z‐isomerization. The current methods for Z‐isomerization of (all‐E)‐lycopene use toxic chemicals such as organic solvents and catalysts. This study is aimed to develop a chemical‐free method for Z‐isomerization of (all‐E)‐lycopene in tomato powder by hot air and superheated steam heating. The Z‐isomerization reaction is promoted by heating above the melting point of lycopene. When heated with superheated steam, the thermal decomposition of lycopene is suppressed compared to that when heated with hot air. When tomato powder is heated at 240 °C for 5 min by superheated steam, the total Z‐isomer content and remaining lycopene are 69.0% and 90.7%, respectively, while with hot air heating, the total Z‐isomer content and remaining lycopene are 69.9% and 68.0%, respectively. These results indicate that the thermal Z‐isomerization of lycopene occurs in the molten state and heating in a low oxygen atmosphere suppresses the thermal decomposition of lycopene. Practical Applications: Tomato powder rich in lycopene Z‐isomers is an important ingredient for the food and animal feed industries. Since Z‐isomers of lycopene are more soluble in solvents including ethanol which is a low‐toxicity and environmentally friendly solvent, the efficiency of lycopene extraction with ethanol can be improved by using the Z‐isomer‐rich tomato powder as a raw material. The obtained Z‐isomer‐rich extract has a high added value because the Z‐isomers have higher bioavailability and antioxidant capacity than those of the all‐E‐isomer. In addition, since lycopene Z‐isomers exhibit higher accumulation efficiency and better color improvement in hen egg yolks than those of the all‐E‐isomer, Z‐isomer‐rich tomato powder is an effective animal feed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号