首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   407篇
  免费   24篇
电工技术   1篇
化学工业   90篇
金属工艺   8篇
机械仪表   9篇
建筑科学   21篇
能源动力   29篇
轻工业   11篇
水利工程   1篇
无线电   50篇
一般工业技术   104篇
冶金工业   9篇
原子能技术   3篇
自动化技术   95篇
  2024年   1篇
  2023年   7篇
  2022年   10篇
  2021年   22篇
  2020年   10篇
  2019年   15篇
  2018年   10篇
  2017年   27篇
  2016年   17篇
  2015年   15篇
  2014年   12篇
  2013年   29篇
  2012年   42篇
  2011年   51篇
  2010年   29篇
  2009年   29篇
  2008年   27篇
  2007年   21篇
  2006年   15篇
  2005年   9篇
  2004年   8篇
  2003年   8篇
  2002年   6篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1968年   2篇
排序方式: 共有431条查询结果,搜索用时 171 毫秒
61.
We report the scanning near-field optical microscopy (SNOM) characterization of a 4 x 4 multimode interference (MMI) device working at a wavelength of 1.55 microm and designed for astronomical signal recombination. A comprehensive analysis of the mapped propagating field is presented. We compare SNOM measurements with beam-propagation-method simulations and thus are able to determine the MMI structure's refractive-index contrast and show that the measured value is higher than the expected value. Further investigation allows us to demonstrate that good care must be taken with the refractive-index profile used in simulation when one deals with low-index contrast structures. We show evidence that a step-index contrast is not suitable for adequate simulation of our structure and present a model that permits good agreement between measured and simulated propagating fields.  相似文献   
62.
Sparse regression often uses ℓ p norm priors (with p < 2). This paper demonstrates that the introduction of mixed-norms in such contexts allows one to go one step beyond in signal models, and promote some different, structured, forms of sparsity. It is shown that the particular case of the ℓ1,2 and ℓ2,1 norms leads to new group shrinkage operators. Mixed norm priors are shown to be particularly efficient in a generalized basis pursuit denoising approach, and are also used in a context of morphological component analysis. A suitable version of the Block Coordinate Relaxation algorithm is derived for the latter. The group-shrinkage operators are then modified to overcome some limitations of the mixed-norms. The proposed group shrinkage operators are tested on simulated signals in specific situations, to illustrate and compare their different behaviors. Results on real data are also used to illustrate the relevance of the approach.  相似文献   
63.
A 3‐MPa, 350 °C fixed‐bed reactor was designed to follow‐up gas‐liquid‐solid reactions on a millimetric size heterogeneous catalyst with Raman spectroscopy. The transparent reactor is a quartz cylinder enclosed in a Joule effect heated stainless‐steel tube. A methodology to determine how to focus the microscope for liquid and solid phase characterization is presented. The setup was validated by performing diesel hydrodesulfurization on a CoMo/alumina extrudate catalyst with a conversion very close to expected values along with the acquisition of Raman spectra of the solid catalyst showing an evolution of the catalyst phase during sulfidation.  相似文献   
64.
The regulation of cell volume is an essential function that is coupled to a variety of physiological processes such as receptor recycling, excitability and contraction, cell proliferation, migration, and programmed cell death. Under stress, cells undergo emergency swelling and respond to such a phenomenon with a regulatory volume decrease (RVD) where they release cellular ions, and other osmolytes as well as a concomitant loss of water. The link between P-glycoprotein, a transmembrane transporter, and cell volume regulation is controversial, and changes in cells volume are measured using microscopy or electrophysiology. For instance, by using the patch-clamp method, our team demonstrated that chloride currents activated in the RVD were more intense and rapid in a breast cancer cell line overexpressing the P-glycoprotein (P-gp). The Cell Lab Quanta SC is a flow cytometry system that simultaneously measures electronic volume, side scatter and three fluorescent colors; altogether this provides unsurpassed population resolution and accurate cell counting. Therefore, here we propose a novel method to follow cellular volume. By using the Coulter-type channel of the cytometer Cell Lab Quanta SC MPL (multi-platform loading), we demonstrated a role for the P-gp during different osmotic treatments, but also a differential activity of the P-gp through the cell cycle. Altogether, our data strongly suggests a role of P-gp in cell volume regulation.  相似文献   
65.
66.
Microscopic sessile suspension feeders live attached to surfaces and, by consuming bacteria-sized prey and by being consumed, they form an important part of aquatic ecosystems. Their environmental impact is mediated by their feeding rate, which depends on a self-generated feeding current. The feeding rate has been hypothesized to be limited by recirculating eddies that cause the organisms to feed from water that is depleted of food particles. However, those results considered organisms in still water, while ambient flow is often present in their natural habitats. We show, using a point-force model, that even very slow ambient flow, with speed several orders of magnitude less than that of the self-generated feeding current, is sufficient to disrupt the eddies around perpendicular suspension feeders, providing a constant supply of food-rich water. However, the feeding rate decreases in external flow at a range of non-perpendicular orientations due to the formation of recirculation structures not seen in still water. We quantify the feeding flow and observe such recirculation experimentally for the suspension feeder Vorticella convallaria in external flows typical of streams and rivers.  相似文献   
67.
Bioresorbable implantable medical devices show a great potential for applications requiring medical care over well‐defined periods of time. Once their function is fulfilled, such implants naturally degrade and resorb in the body, which eliminates adverse long‐term effects or the need for a secondary surgery to extract the implanted device. Since biodegradable materials are water‐soluble, the fabrication of such transient electronic circuits and devices requires special care and needs to rely solely on dry processing steps without exposure to aqueous solutions. A further challenge is the in vivo powering of medical implants that are only constituted of biodegradable materials. This paper describes the design, fabrication, and testing of radio‐frequency biodegradable magnesium microresonators. To this end, an innovative microfabrication process with minimal exposure to aqueous media is developed to fabricate magnesium‐based, water‐soluble electronic components. It consists of a novel sequence of only three steps: one physical vapor deposition, one photolithography, and one ion beam etching step. The frequency‐selective wireless heating of different resonators is demonstrated. This represents a significant step toward their use as power receivers and microheaters in biodegradable implantable medical devices, for applications such as triggered drug release.  相似文献   
68.
Alloying in group V 2D materials and heterostructures is an effective degree of freedom to tailor and enhance their physical properties. Up to date, black arsenic‐phosphorus is the only 2D group V alloy that has been experimentally achieved by exfoliation, leaving all other possible alloys in the realm of theoretical predictions. Herein, the existence of an additional alloy consisting of 2D antimony arsenide (2D‐AsxSb1?x) grown by molecular beam epitaxy on group IV semiconductor substrates and graphene is demonstrated. The atomic mixing of As and Sb in the lattice of the grown 2D layers is confirmed by low‐energy electron diffraction, Raman spectroscopy, and X‐ray photoelectron spectroscopy. The As content in 2D‐AsxSb1?x is shown to depend linearly on the As4/Sb4 deposition rate ratio and As concentrations up to 15 at% are reached. The grown 2D alloys are found to be stable in ambient conditions in a timescale of weeks but to oxidize after longer exposure to air. This study lays the groundwork for a better control of the growth and alloying of group V 2D materials, which is critical to study their basic physical properties and integrate them in novel applications.  相似文献   
69.
In this computational work, a new simulation tool on the graphene/polymer nanocomposites electrical response is developed based on the finite element method (FEM). This approach is built on the multi-scale multi-physics format, consisting of a unit cell and a representative volume element (RVE). The FE methodology is proven to be a reliable and flexible tool on the simulation of the electrical response without inducing the complexity of raw programming codes, while it is able to model any geometry, thus the response of any component. This characteristic is supported by its ability in preliminary stage to predict accurately the percolation threshold of experimental material structures and its sensitivity on the effect of different manufacturing methodologies. Especially, the percolation threshold of two material structures of the same constituents (PVDF/Graphene) prepared with different methods was predicted highlighting the effect of the material preparation on the filler distribution, percolation probability and percolation threshold. The assumption of the random filler distribution was proven to be efficient on modelling material structures obtained by solution methods, while the through-the –thickness normal particle distribution was more appropriate for nanocomposites constructed by film hot-pressing. Moreover, the parametrical analysis examine the effect of each parameter on the variables of the percolation law. These graphs could be used as a preliminary design tool for more effective material system manufacturing.  相似文献   
70.
Van der Waals (vdW) heterostructures have recently been introduced as versatile building blocks for a variety of novel nanoscale and quantum technologies. Harnessing the unique properties of these heterostructures requires a deep understanding of the involved interfacial interactions and a meticulous control of the growth of 2D materials on weakly interacting surfaces. Although several epitaxial vdW heterostructures have been achieved experimentally, the mechanisms governing their synthesis are still nebulous. With this perspective, herein, the growth dynamics of antimonene on graphene are investigated in real time. In situ low‐energy electron microscopy reveals that nucleation predominantly occurs on 3D nuclei followed by a self‐limiting lateral growth with morphology sensitive to the deposition rate. Large 2D layers are observed at high deposition rates, whereas lower growth rates trigger an increased multilayer nucleation at the edges as they become aligned with the Z2 orientation leading to atoll‐like islands with thicker, well‐defined bands. This complexity of the vdW growth is elucidated based on the interplay between the growth rate, surface diffusion, and edges orientation. This understanding lays the groundwork for a better control of the growth of vdW heterostructures, which is critical to their large‐scale integration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号