Iodoperfluooralkylation of terminal alkenes and alkynes is effectively photo‐promoted by benzophenone 2 (BP) or the photoreducible copper(II) complex 1 . In particular, BP at 1 mol% in methanol upon 365 nm irradiation with a low‐pressure mercury lamp (type TLC=thin layer chromatography, 6 W) results in a fast reaction with excellent reaction yields. Complex 1 and BP 2 exhibited very similar reactivity, suggesting that the reactions involving 1 are likely to be governed by the benzophenone photoactivation processes, rather than copper(I)/(II) redox processes. Mechanistic investigations using transient absorption spectroscopy revealed that a deactivation pathway of the benzophenone triplet (3BP*) is via its reaction with the methanol solvent. We propose that the generated radicals, in particular .CH2OH, play a key role in the initiation step forming Rf. by reacting with RfI, Rf. then entering a radical chain cycle. 1H NMR studies provided evidence that a substantial amount (∼7% NMR yield) of the hemiacetal CH3OCH2OH is formed, i.e., the possible by‐product of the reaction between .CH2OH and RfI. Finally, DFT calculations indicate that a triplet‐triplet energy transfer (TTET) process from 3BP* to perfluorooctyl iodide (C8F17I) is unlikely or should be rather slow under the reaction conditions, consistent with the transient absorption studies.
The copper‐catalyzed reaction of 5‐substituted penta‐1,4‐diyn‐3‐yl acetates with P(O)H compounds to efficiently give a new class of phosphonyl diynes is reported. The reaction may take place through a regioselective nucleophilic attack of phosphorus nucleophiles on Cu‐allenylidene intermediates to form allenyl intermediates followed by a rapid allene‐alkyne isomerization process. The synthetic utility of the obtained products is demonstrated.
In parts of Africa and Asia, self‐medication with a hot water infusion of Artemisia annua (Artemisia tea) is a common practice for a number of ailments including malaria and cancer. In our earlier work, such an extract showed better potency than artemisinin alone against both chloroquine‐sensitive and ‐resistant parasites. In this study, in vitro tests of the infusion in MCF7 cells showed high IC50 values (>200 μM ). The combination of artemisinin and 3‐caffeoylquinic acid (3CA), two major components in the extract, was strongly antagonistic and gave a near total loss of cytotoxicity for artemisinin. We observed that the interaction of 3CAs with another cytotoxic compound, cisplatin, showed potentiation of activity by 2.5‐fold. The chelation of cellular iron by 3CA is hypothesized as a possible explanation for the loss of artemisinin activity. 相似文献
Photoaging is not only the main cause of skin aging caused by exogenous factors, it is also related to a variety of skin diseases and even malignant tumors. Excessive and repeated exposure to ultraviolet radiation, especially UVA induces oxidative stress, DNA damage, inflammation, and collagen and elastin degeneration, ultimately leads to skin photoaging, manifested by skin redness, coarse wrinkles, and pigmentation even skin cancer. There has been a large demand of effective prevention and medications but approaches in the current management of photoaging are very limited. In the previous study, we found that a non-coding circular RNA circ_0011129 acts as a miR-6732-5p adsorption sponge to inhibit the reduction of type I collagen and the denaturation and accumulation of elastin in UVA-induced HDF cells photoaging model. However, in vivo instability and efficient delivery to the target cell of circRNA is a major challenge for its clinical application. Therefore, improving its stability and delivery efficiency are desired. In this study, we proposed a strategy of delivering circ_0011129 with small extracellular vesicles (sEVs) from human adipose-derived stem cells (hADSCs) to intervene in the photoaging process. The results showed that sEVs from hADSCs in 3D bioreactor culture (3D-sEVs) can prevent photoaging. Consequently, by overexpressing circ_0011129 in hADSCs, we successfully loaded it into 3D-sEVs (3D-circ-sEVs) and its protective effect was better. Our studies provide a novel approach to preventing skin photoaging, which has important clinical significance and application value for the development of non-coding RNA drugs to treat skin photoaging. We first screened out hADSCs-derived sEVs with excellent anti-oxidant effects. We then compared the sEVs collected from traditional 2D culture with 3D bioreactor culture. By miRNA-seq and GEO data analysis, we found that miRNAs in 3D-sEVs were enriched in cell activities related to apoptosis, cellular senescence, and inflammation. Subsequently, we prepared circ_0011129-loaded 3D-sEVs (3D-circ-sEVs) by overexpressing it in hADSCs for the treatment of photoaging in vitro. We proved that 3D-circ-sEVs can interfere with the process of cell photoaging and protect cells from UVA radiation damage, as well as in a H2O2-induced oxidative stress model. 相似文献
To date, different strategies of whole-genome sequencing (WGS) have been developed in order to understand the genome structure and functions. However, the analysis of genomic sequences obtained from natural populations is challenging and the biological interpretation of sequencing data remains the main issue. The MinION device developed by Oxford Nanopore Technologies (ONT) is able to generate long reads with minimal costs and time requirements. These valuable assets qualify it as a suitable method for performing WGS, especially in small laboratories. The long reads resulted using this sequencing approach can cover large structural variants and repetitive sequences commonly present in the genomes of eukaryotes. Using MinION, we performed two WGS assessments of a Romanian local strain of Drosophila melanogaster, referred to as Horezu_LaPeri (Horezu). In total, 1,317,857 reads with a size of 8.9 gigabytes (Gb) were generated. Canu and Flye de novo assembly tools were employed to obtain four distinct assemblies with both unfiltered and filtered reads, achieving maximum reference genome coverages of 94.8% (Canu) and 91.4% (Flye). In order to test the quality of these assemblies, we performed a two-step evaluation. Firstly, we considered the BUSCO scores and inquired for a supplemental set of genes using BLAST. Subsequently, we appraised the total content of natural transposons (NTs) relative to the reference genome (ISO1 strain) and mapped the mdg1 retroelement as a resolution assayer. Our results reveal that filtered data provide only slightly enhanced results when considering genes identification, but the use of unfiltered data had a consistent positive impact on the global evaluation of the NTs content. Our comparative studies also revealed differences between Flye and Canu assemblies regarding the annotation of unique versus repetitive genomic features. In our hands, Flye proved to be moderately better for gene identification, while Canu clearly outperformed Flye for NTs analysis. Data concerning the NTs content were compared to those obtained with ONT for the D. melanogaster ISO1 strain, revealing that our strategy conducted to better results. Additionally, the parameters of our ONT reads and assemblies are similar to those reported for ONT experiments performed on various model organisms, revealing that our assembly data are appropriate for a proficient annotation of the Horezu genome. 相似文献
Hypoglycemia, as a complication of type 2 diabetes (T2D), causes increased morbidity and mortality but the physiological response underlying hypoglycemia has not been fully elucidated. Small noncoding microRNA (miRNA) have multiple downstream biological effects. This pilot exploratory study was undertaken to determine if induced miRNA changes would persist and contribute to effects seen 24 h post-hypoglycemia. A parallel, prospective study design was employed, involving T2D (n = 23) and control (n = 23) subjects. The subjects underwent insulin-induced hypoglycemia (2 mmol/L; 36 mg/dL); blood samples were drawn at baseline, upon the induction of hypoglycemia, and 4 h and 24 h post-hypoglycemia, with a quantitative polymerase chain reaction analysis of miRNA undertaken. The baseline miRNAs did not differ. In the controls, 15 miRNAs were downregulated and one was upregulated (FDR < 0.05) from the induction of hypoglycemia to 4 h later while, in T2D, only four miRNAs were altered (downregulated), and these were common to both cohorts (miR-191-5p; miR-143-3p; let-7b-5p; let-7g-5p), correlated with elevated glucagon levels, and all were associated with energy balance. From the induction of hypoglycemia to 24 h, 14 miRNAs were downregulated and 5 were upregulated (FDR < 0.05) in the controls; 7 miRNAs were downregulated and 7 upregulated (FDR < 0.05) in T2D; a total of 6 miRNAs were common between cohorts, 5 were downregulated (miR-93-5p, let-7b-5p, miR-191-5p, miR-185-5p, and miR-652-3p), and 1 was upregulated (miR-369-3p). An ingenuity pathway analysis indicated that many of the altered miRNAs were associated with metabolic and coagulation pathways; however, of the inflammatory proteins expressed, only miR-143-3p at 24 h correlated positively with tumor necrosis factor-α (TNFa; p < 0.05 and r = 0.46) and negatively with toll-like receptor-4 (TLR4; p < 0.05 and r = 0.43). The MiRNA levels altered by hypoglycemia reflected changes in counter-regulatory glucagon and differed between cohorts, and their expression at 24 h suggests miRNAs may potentiate and prolong the physiological response. Trial registration: ClinicalTrials.gov {"type":"clinical-trial","attrs":{"text":"NCT03102801","term_id":"NCT03102801"}}NCT03102801. 相似文献
Saponins are natural compounds found in plants and have a diverse range of applications. However, the therapeutic potential of saponins in regulating cytotoxicity, angiogenesis, and inflammation in mammalian cells is yet to be explored. Here, we investigated the therapeutic effects of saponins from green tea by exploring the cytotoxic effects of saponins by inducing apoptosis in the human cancer cell lines hepatocellular carcinoma (HEPG2) and colorectal adenocarcinoma (HT29). The anti-angiogenesis effect of saponins was also investigated in human umbilical vein endothelial cells (HUVEC). We explored the ability of saponins to attenuate inflammation in a dose-dependent manner in normal human cells. It was found that saponins exhibit cytotoxic effects in cancer cells and not in normal cells at the same concentration. Cytotoxicity was measured by inducing apoptosis by enhancing caspase-3 (cas-3) activation and B-cell lymphoma-2 (Bcl-2)-associated X protein (BAX) gene expression and suppressing the antiapoptotic protein, Bcl-2. The inhibition of HUVEC proliferation was due to the suppression of the phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), vascular endothelial growth factor receptor-2 (VEGFR-2), and nuclear factor kappa B (NF-κB). We also observed the antioxidant potential of green tea-derived saponins against free radicals in reactive oxygen species (ROS)-induced cells. Here we observed that the saponins exhibited free radical scavenging activities and activated nuclear factorerythroid 2-related factor 2 (NRF-2) leading to the upregulation of antioxidant-related genes in human embryonic kidney 293 (HEK293) cells. Furthermore, we demonstrated that the anti-inflammatory effects were due to the suppression of pro-inflammatory cytokines interleukin (IL)-1β, IL-6, tumor necrosis factor-alpha (TNF-α), and inducible nitric oxide synthase (iNOS) in HEK293 cells. The significance of the work is we are the first to report on the anti-cancer effects of saponins based on the anti-inflammatory, antioxidant, anti-angiogenesis, and apoptosis induction properties. In conclusion, green tea-derived saponins could be effective therapeutics for the treatment of cancer. 相似文献