首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2640篇
  免费   148篇
  国内免费   29篇
电工技术   47篇
综合类   9篇
化学工业   751篇
金属工艺   85篇
机械仪表   105篇
建筑科学   113篇
矿业工程   10篇
能源动力   164篇
轻工业   165篇
水利工程   47篇
石油天然气   27篇
无线电   249篇
一般工业技术   434篇
冶金工业   84篇
原子能技术   18篇
自动化技术   509篇
  2024年   4篇
  2023年   47篇
  2022年   78篇
  2021年   177篇
  2020年   132篇
  2019年   178篇
  2018年   212篇
  2017年   189篇
  2016年   180篇
  2015年   120篇
  2014年   210篇
  2013年   288篇
  2012年   181篇
  2011年   210篇
  2010年   165篇
  2009年   111篇
  2008年   68篇
  2007年   42篇
  2006年   41篇
  2005年   30篇
  2004年   22篇
  2003年   12篇
  2002年   9篇
  2001年   5篇
  2000年   11篇
  1999年   3篇
  1998年   12篇
  1997年   2篇
  1996年   8篇
  1995年   8篇
  1994年   3篇
  1993年   7篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   5篇
  1988年   1篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   6篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1976年   3篇
  1974年   2篇
  1973年   1篇
排序方式: 共有2817条查询结果,搜索用时 15 毫秒
151.
Number-average molecular weight ( $ \overline{M}_{n} $ ) variation of polyethylene terephthalate with respect to crystallization temperature and time, and solid-state polymerization (SSP) time were studied using response surface experimental design method. All experiments were conducted in a fluidized bed reactor. $ \overline{M}_{n} $ values were calculated by Mark?CHouwink equation upon determining intrinsic viscosity (IV) of samples. Two suitable models were proposed for $ \overline{M}_{n} $ and IV, based on the regression coefficient. It was observed that $ \overline{M}_{n} $ increases with decrease in crystallization temperature and increase in crystallization time and SSP time. It was shown that SSP time is the most important parameter based on statistical calculations. Crystallization time, crystallization temperature and SSP time were determined 60?min, 160?°C and 8?h, respectively, in order to achieve maximum $ \overline{M}_{n} $ . Density measurements were applied to study the overall crystallinity of samples. Based on density results it was revealed that percent of crystallinity is not the only factor that affects the $ \overline{M}_{n} $ of polymer. Differential scanning calorimeter was used to analyze thermal properties of the samples. All samples showed two melting peaks. It was observed that the lower melting temperature peak is related to the isothermal crystallization process temperature. Polarized light microscopy was used to study spherulitic structures of polymer films after crystallization process. It was shown that the sample with smallest spherulite size had the maximum $ \overline{M}_{n} $ equal to 26,000?g/mol.  相似文献   
152.
Polyacrylamide gel (PAMG) method is a simple, fast and cheap method used for the synthesis of a wide variety of nanopowders. However, no adequate results have been reported on the thermal degradation behavior of PAMG which can be very effective on the final product properties. In this work, thermal degradation behavior of PAMG in the presence of TiCl4 as a precursor salt for synthesis of TiO2 nanoparticles was examined in comparison with linear polyacrylamide (LPAM) and pure PAMG by thermogravimetry/differential thermal analysis. Their thermal degradation kinetics was investigated, as well. The results showed that thermal degradation of all samples occurred in two stages at different onset temperatures. Despite the high thermal stability of pure PAMG compared to LPAM, the presence of TiCl4 as a mineral material in PAMG structure decreases the thermal degradation onset temperature, considerably. Furthermore for LPAM and PAMG, majority of weight loss occurs in the second stage, but in PAMG with TiCl4 the weight loss occurs mainly at the first stage. For more detailed investigation, residual materials were characterized by Fourier transform infrared spectroscopy and X-ray diffraction (XRD) techniques, attributing this trend to the presence of mineral materials in PAMG structure. XRD and transmission electron microscopy were also applied to confirm anatase crystalline structure and nanoscale distribution of the TiO2 particles synthesized via PAMG method.  相似文献   
153.
The mass transfer process in a perforated rotating disk contactor (PRDC) using a toluene-acetone-water system was investigated.The volumetric overall mass transfer coefficients are calculated in a PRDC column.Both mass transfer directions are considered in experiments.The influences of operating variables containing agitation rate,dispersed and continuous phase flow rates and mass transfer in the extraction column are studied.According to obtained results,mass transfer is significantly dependent on agitation rate,while the dispersed and continuous phase flow rates have a minor effect on mass transfer in the extraction column.Furthermore,a novel empirical correlation is developed for prediction of overall continuous phase Sherwood number based on dispersed phase holdup,Reynolds number and mass transfer direction.There has been great agreement between experimental data and predicted values using a proposed correlation for all operating conditions.  相似文献   
154.
Saffron is the most precious and expensive agricultural product. A dehydration treatment is necessary to convert Crocus sativus L. stigmas into saffron spice. To the best of our knowledge, no information on mass transfer parameters of saffron stigmas is available in the literature. This study aimed at investigating the moisture transfer parameters and quality attributes of saffron stigmas under infrared treatment at different temperatures(60,70, …, 110 °C). It was observed that the dehydration process of the samples occurred in a short accelerating rate period at the start followed by a falling rate period. The effective moisture diffusivity and convective mass transfer coefficient were determined by using the Dincer and Dost model. The diffusivity values varied from1.1103 × 10~(-10)m~2·s~(-1)to 4.1397 × 10~(-10)m~2·s~(-1) and mass transfer coefficient varied in the range of 2.6433 × 10~(-7)–8.7203 × 10~(-7)m·s~(-1). The activation energy was obtained to be 27.86 k J·mol~(-1). The quality assessment results showed that the total crocin content increased, when the temperature increased up to90 °C but, in higher temperatures, the amount of crocin decreased slightly. The total safranal content of the samples decreased slightly when drying temperature increased from 60 °C to 70 °C and then continuously increased up to 110 °C. Also, the amount of picrocrocin increased from 83.1 to 93.3 as the drying temperature increased from 60 °C to 100 °C.  相似文献   
155.
The preparation of thermoplastic nanocomposites of waterborne polyurethane (WBPU) and multiwall carbon nanotubes (MWCNTs) via an in situ polymerization approach is presented. The effects of the presence and content of MWCNTs on the morphology and thermal, mechanical and electrical properties of the nanocomposites were investigated. Carbon nanotubes were modified with amide groups in order to enhance their chemical affinity towards WBPU. Thermogravimetric studies show enhanced thermal stability of the nanocomposites. Scanning and transmission electronic microscopy images prove that functionalized carbon nanotubes can be effectively dispersed in WBPU matrix. Mechanical properties reveal that Young's modulus and tensile strength tend to increase when appropriate amounts of MWCNTs are loaded due to the reinforcing effect of the functionalized carbon nanotubes. Thermal properties show an increase in the glass transition temperature and storage modulus with an increase in MWCNT content. X‐ray diffraction reveals better crystallization of the WBPU in the presence of MWCNTs. The WBPU/MWCNT nanocomposite film containing 1 wt% of MWCNTs exhibits a conductivity nearly five orders of magnitude higher than that of WBPU film. © 2017 Society of Chemical Industry  相似文献   
156.
Random copolyesters having 1,4-butanediol units were synthesized from a transesterification process between homopolymers constituted by aliphatic dicarboxylates (i.e. succinate, adipate or sebacate) and the aromatic therephthalate derivative, as verified by NMR spectroscopy. Biodegradability of resulting copolyesters was studied via enzymatic hydrolysis using Pseudomonas cepacia lipase at pH = 7.2 and 37 °C. Kinetics of degradation showed that in all cases the degradation rate decreased after 19 days of exposure. The observed glass transition temperatures, T g, of the random copolyesters showed a non-linear dependence on composition, a feature that was explained in terms of the internal stiffening effect of butylene terephthalate units. Copolymers with higher aliphatic (i.e. 50 and 70 mol-%) and methylene (i.e. adipate and sebacate units) contents showed double melting peaks in DSC thermograms. These copolyesters resulted in two different crystalline rich phases after melt-crystallization and subsequent cooling. The ratio between these phases logically depended on the predominant aliphatic or aromatic dicarboxylate content. The copolymers initially crystallized via the aromatic units through a heterogeneous nucleation and a spherulitic growth. The presence of aliphatic dicarboxylate units hindered the beginning of the crystallization process, but the overall growth kinetic constant was similar for all samples. The secondary nucleation constants were determined and showed higher values for samples with higher adipate and sebacate contents.  相似文献   
157.
Due to the vast production of crude oil and consequent pressure drops through the reservoirs, secondary and tertiary oil recovery processes are highly necessary to recover the trapped oil. Among the different tertiary oil recovery processes, foam injection is one of the most newly proposed methods. In this regard, in the current investigation, foam solution is prepared using formation brine, C19TAB surfactant and air concomitant with nano-silica (SiO2) as foam stabilizer and mobility controller. The measurements revealed that using the surfactant-nano SiO2 foam solution not only leads to formation of stable foam, but also can reduce the interfacial tension mostly considered as an effective parameter for higher oil recovery. Finally, the results demonstrate that there is a good chance of reducing the mobility ratio from 1.12 for formation brine and reservoir oil to 0.845 for foam solution prepared by nanoparticles.  相似文献   
158.
In this study, preparation of high-density polyethylene (HDPE)/clay nanocomposite by in situ polymerization of ethylene using a zirconocene catalyst (bis-(cyclopentadienyl) zirconium dichloride (Cp2ZrCl2)) was investigated. To obtain higher efficiency, nanoclay particles (Na-montmorillonite) were modified by ammonia (NH3), NH3/methylaluminoxane (MAO), NH3/dodecylamine (DDA), and NH3/MAO/DDA systems. The results showed that the activity of the catalyst supported on the nanoclay particles modified by NH3/MAO (762 gp/mmol (Zr) t [atm]) was higher than that of the one supported on the unmodified nanoclay as well as the other prepared modified nanoclay-supported catalyst systems. The catalyst activities versus MAO concentration in NH3/MAO treatment system and versus DDA concentration in NH3/DDA system showed a maximum. Unexpectedly, a very low catalyst activity (180 gp/mmol(Zr) t [atm]) was obtained using NH3/MAO/DDA system. X-ray diffraction patterns showed that the HDPE/clay nanocomposites prepared by NH3/MAO/DDA treatment system had less intercalated structure. Fourier transform infrared (FTIR) spectroscopy confirmed that water molecules of the nanoclay particles were reduced by NH3 modification. DSC results revealed that crystallinity of the HDPE/clay nanocomposites increased with the modification of the nanoclay particles. The maximum degree of crystallinity of 80.8% was obtained for HDPE/clay nanocomposites prepared by the nanoclay modified by NH3. In addition, nanoclay modification with NH3, NH3/MAO, and NH3/DDA systems resulted in higher thermal decomposition temperature (~30 °C higher than 480 °C of the unmodified one). Such increase was not observed for the NH3/MAO/DDA treatment system. Dynamic mechanical analysis showed an increase in the elastic modulus of the nanocomposite samples prepared by modified nanoclay particles, as well. Meanwhile, modification of the nanoclay particles by NH3 led to the highest elastic behavior compared to the other modification systems. It was about 4.6 GPa which was 28% higher than the elastic modulus of the nanocomposite prepared by unmodified nanoclay particles.  相似文献   
159.
In this study, the impact of TiN as a sintering aid on the relative density and microstructure of TiB2 ceramic was investigated. Monolithic TiB2 and TiB2 doped with 5?wt% TiN were sintered at 1900?°C for 7?min dwell time under the pressure of 40?MPa by spark plasma. The addition of TiN affected the microstructure of TiB2-based sample considerably depicting the finer grains in the as-sintered ceramic. X-ray diffraction evaluation indicated that no interaction occurred between the initial materials. However, detail investigation by the map analysis and energy dispersive spectroscopy results revealed the formation of in-situ nano-sized hBN secondary phase in the TiN-doped TiB2. In addition, TiN played a remarkable role on increasing the relative density of TiN-doped TiB2 ceramic producing a nearly fully dense ceramic with relative density of 99.9% in comparison with the monolithic ceramic having 96.7% relative density.  相似文献   
160.

Since ZnO nanoparticles increase the electrical conductivity of the polypyrrole (PPy) coatings, an investigation was carried out to evaluate the effect of ZnO nanoparticles loading on the corrosion protection performance of PPy coatings on AA2024 Al alloy in 3.5% NaCl solution. At first, some measurements were carried out to find the best experimental conditions containing the electrodeposition method, electrosynthesis solvent composition, and ZnO nanoparticles’ concentration for preparing the optimum PPy coating on Al alloy2024. Three different methods of electrodeposition, namely: cyclic voltammetry, galvanostatic, and potentiostatic techniques were analyzed. The anti-corrosion performance of the PPy coatings was evaluated by electrochemical impedance spectroscopy and Tafel polarization methods. The PPy prepared by potentiostatic method exhibited the best performance against corrosion of Al alloy2024 in 3.5% NaCl solution. Then, different mixtures of H2O/ethanol were tested as electrosynthesis solvents for preparation of PPy coatings on the alloy by optimized electrodeposition mode (i.e., potentiostatic). In evaluation of the prepared coatings, the pure water was introduced as the optimum solvent in electrodeposition of PPy. The investigation of different ZnO nanoparticles’ concentrations proved that the PPy coating containing 0.025% ZnO nanoparticles was the optimum coating against the corrosion of Al alloy in NaCl solution. Finally, the long-term evaluation of the corrosion protection performance of the coatings revealed that the optimum coating provided suitable protection against corrosion up to 14 days after immersion.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号