首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3137篇
  免费   209篇
  国内免费   13篇
电工技术   47篇
综合类   11篇
化学工业   677篇
金属工艺   71篇
机械仪表   113篇
建筑科学   156篇
矿业工程   6篇
能源动力   227篇
轻工业   505篇
水利工程   30篇
石油天然气   17篇
无线电   213篇
一般工业技术   634篇
冶金工业   99篇
原子能技术   20篇
自动化技术   533篇
  2024年   9篇
  2023年   42篇
  2022年   80篇
  2021年   152篇
  2020年   153篇
  2019年   143篇
  2018年   203篇
  2017年   149篇
  2016年   215篇
  2015年   115篇
  2014年   181篇
  2013年   341篇
  2012年   191篇
  2011年   236篇
  2010年   170篇
  2009年   182篇
  2008年   150篇
  2007年   139篇
  2006年   86篇
  2005年   70篇
  2004年   62篇
  2003年   46篇
  2002年   45篇
  2001年   17篇
  2000年   17篇
  1999年   26篇
  1998年   27篇
  1997年   19篇
  1996年   22篇
  1995年   8篇
  1994年   6篇
  1993年   4篇
  1992年   6篇
  1991年   6篇
  1990年   3篇
  1989年   2篇
  1988年   4篇
  1987年   4篇
  1986年   5篇
  1985年   5篇
  1984年   5篇
  1982年   4篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有3359条查询结果,搜索用时 0 毫秒
111.
Nimonic 80A is a nickel-chrome superalloy, commonly used due to its high resistance against creep, oxidation, and temperature corrosion. This paper presents the material constitutive models of Nimonic 80A superalloy. Johnson–Cook (JC) and modified JC model is preferred among the different material constitutive equations (Zerill Armstrong, Bodner Partom, Arrhenius type) due to its accuracy in the literature. Three different types of compression tests were applied to determine the equation parameters. Firstly, quasi-static tests were performed at room temperature. These tests were conducted at 10?3, 10?2, and 10?1 s?1 strain rates. Secondly, compression tests were performed at room temperature at high strain rates (370–954 s?1) using the Split-Hopkinson pressure bar. Finally, compression tests were performed at a temperature level from 24 to 200 °C at the reference strain rate (10?3 s?1). Johnson–Cook and modified JC model parameters of Nimonic 80A were determined with the data obtained from these tests, and they were finally verified statistically.  相似文献   
112.
Unhydrogenated and hydrogenated sunflowerseed oils were exposed to the autoxidation process by sunlight under atmospheric conditions. Experiments were carried out in equal-sized glass, PET (polyethylene terephthalate) polymer, and metal (covered by tin) containers. The reaction time was 30 d, and the reaction course was observed by determining weight changes and peroxide values (PV) of the oil samples at the same time within 2-d intervals. The logarithm of the PV was plotted against time, and straight lines were obtained from the 4th or 6th d. The autoxidation reaction constants were obtained for each oil in each container. When comparing the reaction constants, the unhydrogenated oils autoxidize easily, and the autoxidation reaction occurs faster in sunlight in glass than in the PET polymer container and much faster than in the darkness of the metal container.  相似文献   
113.
114.
As a continuation of efforts to explore the potential of certain types of polymer nanocomposites to be successful candidates as dental restoration/adhesion materials, a Zr‐containing and organically modified silicate‐based material system with epoxy functionality was prepared by use of a sol–gel synthesis method, and UV light‐ and visible light (VL)‐curing processes. Comparative influences of the synthesis and processing parameters on the mechanical, thermal, and microstructural/nanostructural properties of the system were detailed. Zr‐containing species proved to more effectively catalyze the epoxy polymerization/crosslinking reactions than those containing Ti. Incorporation of Zr into the nanocomposite network led to significantly advanced mechanical properties. An elastic (Young's) modulus value of 23 MPa was achieved. The system with relatively high Zr content was successfully obtained, which also had higher thermal stability. Overall observations and results suggested that Zr content, and the UV light‐ or VL‐curing process could be capitalized on to modify the structure, and to improve the final properties of these material systems, which indicated a prospective opportunity for this material system to be utilized in dental restoration/adhesion applications. POLYM. ENG. SCI., 55:792–798, 2015. © 2014 Society of Plastics Engineers  相似文献   
115.
A complete range of perovskite solid solutions can be formed in the (1 − x )Ba(Mg1/3Nb2/3)O3- x La(Mg2/3Nb1/3)O3 (BMN-LMN) pseudobinary system. While pure BMN adopts a 1:2 cation ordered structure, 1:1 ordered phases are stabilized for 0.05 ≤ x ≤ 1.0. Dark-field TEM images indicate that the La-doped solid solutions are comprised of large 1:1 ordered domains and no evidence was found for a phase-separated structure. This observation coupled with the systematic variations in the intensities of the supercell reflections supports a charge-balanced "random-site" model for the 1:1 ordering. The substitution of La also induces a transformation from a negative to positive temperature coefficient of capacitance in the region 0.25 ≤ x ≤ 0.5.  相似文献   
116.
To increase the mechanical properties of recycled carbon fiber-reinforced polypropylene (PP) composites, recycled carbon fibers (RCF) were subjected to atmospheric plasma treatment at different plasma powers (100, 200, and 300 W). The changes on surface topography and roughness of RCF were examined by atomic force microscopy. Plasma treatment of RCF increased the roughness value of RCF. The variation of surface elemental compositions and tensile strength of RCF were determined by using X-ray photoelectron spectroscopy and tensile test, respectively. Plasma-treated RCF-reinforced PP composites were fabricated using high speed thermo-kinetic mixer. Plasma treatment of RCF at 100 W increased the tensile and flexural strength values of RCF-reinforced PP composites considerably by 17 and 11%, respectively. However, plasma treatment of RCF at higher plasma powers (200 W and 300 W) decreased tensile and flexural strength values of composites because of the etching of RCF. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47131.  相似文献   
117.
Two-dimensional MoS2 nanoparticles (2D-nps) exhibit artificial enzyme properties that can be regulated at bio-nanointerfaces. We discovered that protein lipase is able to tune the peroxidase-like activity of MoS2 2D-nps, offering low-nanomolar, label-free detection and identification in samples with unknown identity. The inhibition of the peroxidase-like activity of the MoS2 2D-nps was demonstrated to be concentration dependent, and as low as 5 nm lipase was detected with this approach. The results were compared with those obtained with several other proteins that did not display any significant interference with the nanozyme behavior of the MoS2 2D-nps. This unique response of lipase was characterized and exploited for the successful identification of lipase in six unknown samples by using qualitative visual inspection and a quantitative statistical analysis method. The developed methodology in this approach is noteworthy for many aspects; MoS2 2D-nps are neither labeled with a signaling moiety nor modified with any ligands for signal readout. Only the intrinsic nanozyme activity of the MoS2 2D-nps is exploited for this detection approach. No analytical equipment is necessary for the visual detection of lipase. The synthesis of the water-soluble MoS2 2D-nps is low costing and can be performed in bulk scale. Exploring the properties of 2D-nps and their interactions with biological materials reveals highly interesting yet instrumental features that offer the development of novel bioanalytical approaches.  相似文献   
118.
Flue gas emissions and the harmful effects of these gases urge to separate and capture these unwanted gases. Ionic liquids due to negligible vapor pressure, thermal stability, and wide electrochemical stability have expanded its application in gas separations. A comprehensive overview of the recent developments and applications of ionic liquid membranes (ILMs) for gas separation is given. The three general classifications of ILMs, such as supported ionic liquid membranes (SILMs), ionic liquid polymeric membranes (ILPMs), and ionic liquid mixed‐matrix membranes (ILMMMs) along with their applications, for the separation of various mixed gases systems is discussed in detail. Furthermore, issues, challenges, computational study, and future perspectives for ILMs are also considered.  相似文献   
119.
This study presents an improved mathematical model to analyse the stress wave propagation in adhesively bonded functionally graded (FG) circular cylinders (butt joint) under an axial impulsive load. The volume fractions of the material constituents in the upper and lower cylinders were functionally tailored through the thickness of each cylinder using a power-law. The effective material properties of both cylinders, which are made of aluminum (Al) and silicon carbide (SiC), at any point were predicted by using the Mori–Tanaka homogenization scheme. In this improved model, the governing equations of the wave propagation include the spatial derivatives of local mechanical properties and were discretized by means of the finite difference method. The influence of these spatial derivatives and the compositional gradient exponent on the displacement and stress distributions of the joint was investigated. The material composition variations of both cylinders affected the displacement and stress fields whereas the compositional gradient exponent had a minor effect. The stress concentrations were alleviated in time, the displacement and stress distributions/variations around/along the upper and lower cylinder-adhesive interfaces were significantly affected by the adhesive layer. The spatial derivatives also affected the temporal histories of the displacement and stress components evaluated at the selected critical points of the upper cylinder, adhesive layer and lower cylinder. The consideration of the spatial local material derivatives provided a more accurate mathematical model of wave propagations through the graded layered structures.  相似文献   
120.
The effect of silane treatment on the push-out bond strengths of three different luting agents to fiber-reinforced composite (FRC) posts after thermocycling was evaluated.Sixty single-rooted human maxillary central incisors were sectioned below the cemento-enamel junction, and the roots were endodontically treated. RelyX Fiber Posts (size #2) were inserted using etch-and-rinse, self-etch, and self-adhesive luting agents (cementing agents). For half of the specimen in each group, the fiber posts were treated with a silane coupling agent. Bonded specimens were cut (2-mm-thick sections) and push-out tests were performed (crosshead speed, 0.5 mm/min). Failure modes were evaluated using a stereomicroscope at original magnification ×40.For each luting agent the use of silane did not result in any statistically significant difference at any level of the root compared to those of the control groups except for Variolink II and RelyX Unicem luting agents in apical root section (p<0.05; one-way ANOVA). The post hoc analysis showed that regardless of the pre-treatment procedures, Variolink II achieved significantly higher bond strengths than Panavia F 2.0 and RelyX Unicem in all root sections (p<0.05).The use of a silane coupling agent had no influence on bond strengths depending on the luting agent used, whereas the type of luting agent (etch-and-rinse, self-etch, and self-adhesive) appeared to be a significant influence on the push-out bond strength values independent of the pre-treatment used. Therefore, pre-treatment of fiber posts with a silane coupling agent does not seem to be mandatory, which saves time in the clinical situation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号