首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188570篇
  免费   16196篇
  国内免费   8538篇
电工技术   11486篇
技术理论   13篇
综合类   11646篇
化学工业   29517篇
金属工艺   10322篇
机械仪表   11292篇
建筑科学   13752篇
矿业工程   5433篇
能源动力   5324篇
轻工业   12437篇
水利工程   3288篇
石油天然气   10726篇
武器工业   1403篇
无线电   21825篇
一般工业技术   21580篇
冶金工业   8786篇
原子能技术   2010篇
自动化技术   32464篇
  2024年   900篇
  2023年   3413篇
  2022年   6338篇
  2021年   8452篇
  2020年   6397篇
  2019年   5062篇
  2018年   5729篇
  2017年   6394篇
  2016年   5703篇
  2015年   7584篇
  2014年   9596篇
  2013年   11417篇
  2012年   12997篇
  2011年   15890篇
  2010年   12101篇
  2009年   11352篇
  2008年   10555篇
  2007年   9689篇
  2006年   9731篇
  2005年   8514篇
  2004年   5818篇
  2003年   5035篇
  2002年   4271篇
  2001年   3607篇
  2000年   3534篇
  1999年   4167篇
  1998年   3535篇
  1997年   2954篇
  1996年   2754篇
  1995年   2215篇
  1994年   1801篇
  1993年   1299篇
  1992年   1051篇
  1991年   790篇
  1990年   576篇
  1989年   471篇
  1988年   375篇
  1987年   258篇
  1986年   220篇
  1985年   135篇
  1984年   139篇
  1983年   97篇
  1982年   91篇
  1981年   74篇
  1980年   62篇
  1979年   29篇
  1978年   25篇
  1977年   24篇
  1976年   26篇
  1975年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
High performance fibers with high strength and toughness have great potential in composites, but contradiction between tensile strength and elongation at break makes the preparation to become a current challenge. Herein, an asymmetric structure of more flexible diamine, 3,4′-diaminodiphenyl ether (3,4′-ODA), is introduced into heterocyclic aramid (PBIA) fibers to replace rigid symmetric p-phenylenediamine (PDA). By studying the properties of copolymer (mPEBA) fibers with different ratios of diamine, it is found that the mPEBA fiber reached the optimal mechanical properties with the 30% content of 3,4′-ODA. Compared with homopolymerized heterocyclic aramid fibers, the tensile strength and elongation at break of mPEBA fiber are improved by 26.2% and 38.7%, respectively. Results of X-ray diffraction show that the introduction of 3,4′-ODA structure can increase stretchability of mPEBA fibers, improving the orientation degree during hot-drawing. Molecular dynamics simulations confirm that 3,4′-ODA structure undergoes a conformation transformation to form a straightened chain during hot-drawing, while symmetrical 4,4′-diaminodiphenyl ether (4,4′-ODA) cannot form the same conformation. The misplaced-nunchaku structure is formed based on the special meta-para position of 3,4′-ODA, achieving the synergy of high strength and high toughness.  相似文献   
992.
Fiber-based hygroresponsive torsional actuators provide desirable merits, such as light weight and shapeability, for developing smart systems to harvest energy from moisture which is a ubiquitous natural resource. A key challenge in this development is to realize moisture-triggered actuation combining large actuation and rapid responses. Here, a multiscale design strategy is explored to create high-performance hygroresponsive torsional actuators consisting of chitosan and multiwalled carbon nanotubes (MWCNTs). The superior actuation performance arises from the synergism of contributing factors at different scales, including 1) MWNCTs accelerate the water transport in primary twisted fibers (PTFs), fostering the rotation of PTFs upon moisture stimuli; 2) in situ-formed hierarchically-assembled twists realize cascade amplification of moisture-triggered actuation. Specifically, PTFs are self-twisted to generate secondary helical yarns, that are subsequently over-twisted to yield tertiary coiled yarn. The resultant yarn actuator can reach a maximum rotation speed of 11 400 rpm in 5 s, output gravitational potential energy of 2.4 J kg−1 and gravitational potential power of 0.053 W kg−1 during contraction. This work represents the first design of fiber-based actuators by virtue of moisture-triggered in situ formation of yarns. The established principles of multiscale design will enable high-performance fiber-based hygroresponsive actuators toward advanced intelligent textile and soft robotics.  相似文献   
993.
Hydrogels with excellent stiffness, toughness, anti-fatigue, and self-recovery properties are regarded as promising water-containing materials. In this work, a dual physically cross-linked (DPC) sodium alginate (SA)/poly[acrylamide (AAm)-acrylic acid (AAc)-octadecyl methacrylate (OMA)]-Fe3+ hydrogel is reported, which is constructed by hydrophobic association (HA) and ionic coordination (IC). The optimal DPC hydrogel demonstrates excellent mechanical performance: tensile modulus of 0.65 MPa, tensile strength of 3.31 MPa, elongation at break of 1547%, and toughness of 27.8 MJ m–3. SA/P(AAm-AAc-OMA)-Fe3+ DPC hydrogels also exhibit prominent anti-fatigue and self-recovery performance (99.1–109.7% modulus recovery and 90.4–108.9% dissipated energy recovery after resting for 5 min without additional stimuli at ambient temperature) through the reconstruction of reversible physical cross-linking. Some of the SA/P(AAm-AAc-OMA)-Fe3+ DPC hydrogels even exhibit a stretching-induced strengthening effect, which is similar to the performance of muscle—“the more training, the more strength.” Hence, the combination of HA and IC will provide an effective approach to design DPC hydrogels with desirable mechanical performances and a longer service life for wider applications of soft materials.  相似文献   
994.
Polymer systems have typical multiscale characteristics, both in space and time. The mesoscopic properties of polymers are difficult to describe through traditional experimental approaches. Dissipative particle dynamics (DPD) is a simulation method used for solving mesoscale problems of complex fluids and soft matter. The mesoscopic properties of polymer systems, such as conformation, dynamics, and transport properties, have been studied extensively using DPD. This paper briefly summarizes the application of DPD to research involving microchannel flow, electrospinning, free-radical polymerization, polymer self-assembly processes, polymer electrolyte fuel cells, and biomedical materials. The main features and possible development avenues of DPD are described as well.  相似文献   
995.
996.
Self-healing hydrogels often possess poor mechanical properties which largely limits their applications in many fields. In this work, boron nitride nanosheets are introduced into a network of the poly(vinyl alcohol)/borax (PVA/borax) hydrogels to enhance the mechanical properties of the hydrogel without compromising the self-healing abilities. The obtained hydrogels exhibit excellent mechanical properties with a tensile strength of 0.410 ± 0.007 MPa, an elongation at break of 1712%, a Young's Modulus of 0.860 ± 0.023 MPa, and a toughness of 3.860 ± 0.075 MJ m−3. In addition, the self-healing efficiency of the hydrogels is higher than 90% within 10 min at room temperature. Benefiting from the excellent self-healing properties, the shapeability of the hydrogel fragments is observed using different molds. In addition, the hydrogels display rapid pH-driven shape memory effects and can recover to their original shape within 260 s. Overall, this work provides a new approach to hydrogels with integrated excellent mechanical properties, self-healing abilities, and rapid pH-driven shape memory effects.  相似文献   
997.
In order to meet the requirements of polymer dielectric materials for high thermal stability and excellent dielectric properties in the application of high-temperature film capacitors, a series of polyimide (PI) films are fabricated by introducing a self-synthesized aniline trimer (ACAT) with a conjugated structure in this work. Since the conjugated ACAT in the main chains of PI improves the electron polarization and carrier mobility of the PI molecular chains, the dielectric constant of the ACAT-PI films is greatly enhanced (4.4–7.4). Meanwhile, the dissipation factor does not increase apparently (0.002–0.013). The dielectric properties are stable even when the temperature is up to 200 °C, the thermal degradation temperature is as high as 450 °C, and the mechanical properties are also excellent (70–105 MPa). Among all the films, the PI film with 5 mol% ACAT exhibits the maximal energy density of 3.6 J cm−3 under the field of 426 kV mm−1, the high tensile strength (90 MPa) and the excellent thermal stability (Td5 = 515 °C). The work paves the way to prepare high-temperature polymer dielectric film materials with high energy storage density.  相似文献   
998.
999.
A 3D architecture carbon fiber preform, specifically fine-woven cloth and punctured felt preform, is used to manufacture a novel advanced Cf/C-SiC-ZrC composite. The composite matrix is produced by chemical vapor infiltration (CVI) plus precursor infiltration and pyrolysis (PIP) process and finalized by using a chemical vapor deposition (CVD) of SiC coating to make the final density of the material reach 1.95 g/cm3. The organic precursors of SiC and ZrC have a weight ratio of 4:1 in a xylene solute. The composite mechanical properties, such as tensile, compression, bending, shear, and Z-direction load bearing, are introduced under analysis to find possible applications for the composite. What is more, scanning electron microscope (SEM) images are employed to illustrate the failure behavior of the ceramic composite. The results showed that the punctured filament tows will be beneficial, not only for the composite to withstand compression force up to 308.6 MPa and shear strength to 18.14 MPa but also for the alternatively stacked weave piles and short fiber layers to support the punctured bundles, as well as to hold the composite structure under mechanical forces from different orientations, which is believed to reinforce the ceramic matrix for some high pressure and severe ablation applications.  相似文献   
1000.
Journal of Inorganic and Organometallic Polymers and Materials - The original version of this article unfortunately contained mistakes. In line 9 of the abstract, 5% should read as 2%. The...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号