首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9495篇
  免费   731篇
  国内免费   89篇
电工技术   180篇
综合类   41篇
化学工业   2619篇
金属工艺   214篇
机械仪表   395篇
建筑科学   355篇
矿业工程   20篇
能源动力   617篇
轻工业   910篇
水利工程   190篇
石油天然气   145篇
武器工业   5篇
无线电   976篇
一般工业技术   1620篇
冶金工业   212篇
原子能技术   67篇
自动化技术   1749篇
  2024年   40篇
  2023年   191篇
  2022年   346篇
  2021年   613篇
  2020年   550篇
  2019年   680篇
  2018年   775篇
  2017年   732篇
  2016年   723篇
  2015年   430篇
  2014年   713篇
  2013年   1043篇
  2012年   652篇
  2011年   734篇
  2010年   471篇
  2009年   406篇
  2008年   245篇
  2007年   182篇
  2006年   149篇
  2005年   102篇
  2004年   102篇
  2003年   58篇
  2002年   57篇
  2001年   28篇
  2000年   23篇
  1999年   26篇
  1998年   22篇
  1997年   18篇
  1996年   23篇
  1995年   19篇
  1994年   10篇
  1993年   15篇
  1992年   10篇
  1991年   17篇
  1990年   16篇
  1989年   12篇
  1988年   7篇
  1987年   7篇
  1986年   8篇
  1985年   8篇
  1984年   14篇
  1983年   12篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   6篇
  1978年   3篇
  1977年   3篇
  1973年   3篇
  1967年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
Novel polyurethane insulating coatings were prepared from the reaction of glycerin‐terminated polyurethane prepolymers (GPUPs) and a blocked isocyanate curing agent (BIC). The GPUPs were prepared from the reaction of one equivalent of polycaprolactone polyol (CAPA 210) with an excess amount of 4,4′‐methylene bis(phenyl isocyanate) (MDI) and subsequent reaction of the NCO‐terminated polyurethane with glycerin. The BIC was prepared from the reaction of trimethylol propane (TMP), toluene diisocyanate (TDI) and N‐methylaniline (NMA). The polyols and curing agent were characterized by conventional methods while the curing condition was optimized via gel content measurements. The curing kinetics of the polyurethane coating were investigated and the kinetic parameters derived. The crosslink densities of the samples were determined via the equilibrium swelling method, using the Flory–Rehner equation. The relationships between the crosslink density and the electrical, physical, mechanical and dynamic mechanical properties of the coatings were also studied. Copyright © 2005 Society of Chemical Industry  相似文献   
2.
3.
High level expression of recombinant human tumour necrosis factor β (rh TNF-β) in Escherichia coli results in the formation of two portions of protein, namely soluble active protein and insoluble protein which is inactive and aggregates in the form of inclusion bodies (IBs). In this study, a procedure for purification and renaturation of rh TNF-β from inclusion bodies has been designed and verified experimentally with a product purity of more than 90% and a recovery of about 30%. The procedure includes washing of IBs with specific wash buffer (Triton X-100/EDTA/lysozyme/PMSF), their solubilization with 8 mol dm?3 alkaline urea, purification with ion-exchange columns, refolding with renaturation buffer and finally concentration and desalination with an ultrafiltration membrane. The characteristics of the renatured protein were identical with those of purified protein from the soluble fraction as demonstrated by (1) SDS-PAGE, (2) cytotoxic activity on mouse L929 cells, (3) N-terminal amino acid sequence, and (4) gel filtration chromatography.  相似文献   
4.
The effect of carbon surface oxidation on platinum supported carbon particles (Pt/C) with nitric acid was investigated by cyclic voltammetry, electrochemical impedance spectroscopy, polarization experiments and chronoamperometry. Cyclic voltammograms, polarization curves and electrochemical impedance spectra showed that the treated catalyst had much larger active surface area and higher ionic conductivity than the untreated catalyst, and provided enhanced performance for oxygen reduction. The formation of acidic groups was examined by IR spectra. The Pt/C surface oxidation had a large effect on the performance of a gas diffusion electrode for oxygen reduction reaction.  相似文献   
5.
Polymer/Silica nanocomposite latex particles were prepared by emulsion polymerization of methyl methacrylate (MMA) with dimethylaminoethyl methacrylate (DM). The reaction was performed using a nonionic surfactant and in the presence of silica nanoparticles as the seed. The polymer‐coated silica nanoparticles with polymer content and number average particle sizes ranged from 32 to 93 wt % and 114–310 nm, respectively, were obtained depending on reaction conditions. Influences of some synthetic conditions such as MMA, DM, surfactant concentration, and the nature of initiator on the coating of the silica nanoparticles were studied. Electrostatic attraction between anionic surface of silica beads and cationic amino groups of DM is the main driving force for the formation of the nanocomposites. It was demonstrated that the ratio of DM/MMA is important factor in stability of the system. The particle size, polymer content, efficiency of the coating reaction, and morphology of resulted nanocomposite particles showed a dependence on the amount of the surfactant. Zeta potential measurements confirmed that the DM was located at the surface of the nanocomposites particles. Thermogravimeteric analysis indicated a relationship between the composition of polymer shell and polymer content of the nanocomposites. The nanocomposites were also characterized by FTIR and differential scanning calorimetry techniques. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
6.
Electrochemical treatment processes can significantly contribute to the protection of the environment through the minimization of waste and toxic materials in effluents. From a pharmaceutical point of view and due to the existing resemblance between the electrochemical and biological reactions, it can be assumed that the oxidation mechanisms on the electrode and in the body share similar principles. In this paper, the application of electrochemical studies in the design of an environmentally friendly method was delineated for the new hydrocaffeic acid (HCA, 3,4-dihydroxy hydrocinnamic acid) derivatives synthesis at carbon electrodes in an undivided cell. In this cell, the EC mechanism reaction was involved, comprising two steps alternatively; (1) electrochemical oxidation and (2) chemical reaction. In particular, the electro-organic reactions of HCA, an important biological molecule, were studied in a water–acetonitrile (90:10 v/v) mixture in the presence of benzenesulfinic acid (3) and p-toluenesulfinic acid (4). The research included the use of a variety of experimental techniques, such as cyclic voltammetry, controlled-potential electrolysis and product spectroscopic identification.  相似文献   
7.
A series of polyurethane (PU) elastomers was prepared by the reaction of poly(?‐caprolactone) and 4,4′‐diphenylmethane diisocyanate, which was extended with a series of chain extenders (CEs) having 2–10 methylene units in their structure. The completion of the reaction was confirmed by Fourier transform infrared spectroscopy. The chemical structures of the synthesized PU samples were characterized with Fourier transform infrared, 1H‐NMR, and 13C‐NMR spectroscopy, and the thermal properties were determined by thermogravimetric analysis, DSC, and dynamic mechanical thermal analysis techniques. The mechanical properties were also studied and are discussed. The thermogravimetric analysis and DSC analysis showed that CE length had a considerable effect on the thermal properties of the prepared samples. The dynamic mechanical thermal analysis and damping peaks were also affected by the number of methylene units in the CE length. The elastomer extended with 1,2‐ethane diol exhibited optimum thermal properties, whereas the elastomer based on 1,10‐decane diol displayed the worst thermal properties. Tensile strength and elongation at break decreased with increasing CE length, whereas hardness showed the opposite trend. The glass‐transition temperature moved toward lower temperatures with increasing CE length. The decrease in the glass‐transition temperature and tensile properties were interpreted in terms of decreasing hard segments and increasing chain flexibility. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
8.

Neural networks (NNs) are extensively used in modelling, optimization, and control of nonlinear plants. NN-based inverse type point prediction models are commonly used for nonlinear process control. However, prediction errors (root mean square error (RMSE), mean absolute percentage error (MAPE) etc.) significantly increase in the presence of disturbances and uncertainties. In contrast to point forecast, prediction interval (PI)-based forecast bears extra information such as the prediction accuracy. The PI provides tighter upper and lower bounds with considering uncertainties due to the model mismatch and time dependent or time independent noises for a given confidence level. The use of PIs in the NN controller (NNC) as additional inputs can improve the controller performance. In the present work, the PIs are utilized in control applications, in particular PIs are integrated in the NN internal model-based control framework. A PI-based model that developed using lower upper bound estimation method (LUBE) is used as an online estimator of PIs for the proposed PI-based controller (PIC). PIs along with other inputs for a traditional NN are used to train the PIC to predict the control signal. The proposed controller is tested for two case studies. These include, a chemical reactor, which is a continuous stirred tank reactor (case 1) and a numerical nonlinear plant model (case 2). Simulation results reveal that the tracking performance of the proposed controller is superior to the traditional NNC in terms of setpoint tracking and disturbance rejections. More precisely, 36% and 15% improvements can be achieved using the proposed PIC over the NNC in terms of IAE for case 1 and case 2, respectively for setpoint tracking with step changes.

  相似文献   
9.
The compulsion to use bioplastics has increased significantly today. One of the important aspects of plastics is their recyclability. Therefore, the important question of this research is that although bio-based compounds containing starch are sensitive to thermal-mechanical recycling processes, are such products thermally recyclable? To answer the question, polypropylene (PP)/thermoplastic starch (TPS) compound granules were extruded up to five times, and in the other part, single-extruded granules were blended at different ratios with virgin granules by extrusion. In order to characterize these samples, Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, rotational disc rheometry, tensile properties, and appearance evaluation were used. The results showed that it is possible to recycle PP/TPS granules up to four times repetition of the extrusion operation and the fifth repetition also showed slight changes. There was also a blend of single-extruded granules with virgin material up to a 50:50% composition without significant variation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号