首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9619篇
  免费   745篇
  国内免费   90篇
电工技术   184篇
综合类   41篇
化学工业   2657篇
金属工艺   217篇
机械仪表   397篇
建筑科学   360篇
矿业工程   20篇
能源动力   624篇
轻工业   921篇
水利工程   195篇
石油天然气   140篇
武器工业   5篇
无线电   988篇
一般工业技术   1656篇
冶金工业   216篇
原子能技术   67篇
自动化技术   1766篇
  2024年   40篇
  2023年   196篇
  2022年   351篇
  2021年   629篇
  2020年   553篇
  2019年   697篇
  2018年   780篇
  2017年   740篇
  2016年   729篇
  2015年   433篇
  2014年   719篇
  2013年   1054篇
  2012年   664篇
  2011年   743篇
  2010年   476篇
  2009年   412篇
  2008年   247篇
  2007年   186篇
  2006年   152篇
  2005年   104篇
  2004年   102篇
  2003年   58篇
  2002年   57篇
  2001年   29篇
  2000年   24篇
  1999年   25篇
  1998年   22篇
  1997年   19篇
  1996年   24篇
  1995年   20篇
  1994年   11篇
  1993年   17篇
  1992年   11篇
  1991年   17篇
  1990年   16篇
  1989年   12篇
  1988年   7篇
  1987年   7篇
  1986年   8篇
  1985年   8篇
  1984年   15篇
  1983年   12篇
  1982年   4篇
  1981年   3篇
  1980年   3篇
  1979年   6篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1973年   2篇
排序方式: 共有10000条查询结果,搜索用时 13 毫秒
861.
In this investigation, a two‐step method for the preparation of magnesium silicide (Mg2Si) nanopowder was studied. This method is known as mechanical alloying followed by heat treatment. The results showed that the compositions of the combustion products depended on the milling time, heat treatment temperature, and starting mixtures. Pure Mg2Si nanopowder was formed after short milling time and heat treatment, from Mg and Si powders with the mole ratio of 2.1:1 (Mg:Si) at 500°C in Ar atmosphere. Using the Mg2Si nanopowder, Mg2Si ceramic was produced by spark plasma sintering at 800°C under 50 MPa for 15 min. Composition and structure of reactants and products were examined by X‐ray diffraction (XRD), field emission scanning electron microscopy (FE‐SEM) and high‐resolution transmission electron microscopy (HR‐TEM).  相似文献   
862.
This study investigates the effect of clay addition on the broadband dielectric properties of multi‐walled carbon nanotube/polyvinylidene fluoride (MWCNT/PVDF) composites, that is, frequency range of 101−106 Hz. Different loadings of MWCNT and clay were used for the preparation of three‐phase (MWCNT/Clay/PVDF) nanocomposites via melt‐mixing method. The crystalline structure and morphology of nanocomposites were examined by employing characterization techniques such as X‐ray diffraction, transmission electron microscopy, and differential scanning calorimetry. The dielectric spectroscopy showed that introducing clay into the MWCNT/PVDF nanocomposites at a critical MWCNT concentration improved dielectric properties tremendously. It was interestingly observed that the incorporation of a specific amount of clay, that is, 1.0 wt%, into the (MWCNT/PVDF) nanocomposite at a critical MWCNT loading, that is, 0.5 wt% MWCNT, resulted in a huge increase in the dielectric permittivity (670% at 100 Hz) and a considerable reduction in the dissipation factor (68% at 100 Hz). POLYM. COMPOS., 161–167, 2016. © 2014 Society of Plastics Engineers  相似文献   
863.
In this study, experimental test equipment developed in‐house was used to study the compaction behavior of stitched quasi‐unidirectional (UD) non‐crimp fabrics (NCF) during the pre‐filling, filling, and post‐filling stages of the vacuum infusion (VI) process. The effects of the stitch pattern, stitch tension, and fiber sizing of reinforcements, as well as the effect of nesting of fiber bundles in neighboring layers, were studied. Moreover, the effects of cyclic compaction, resin viscosity, and different post‐filling strategies were studied. The developed experimental test equipment provided an applicable measuring method for characterizing the compaction behavior of both the dry and resin‐impregnated reinforcements. The effects of the stitching parameters and fiber nesting of reinforcements were found. The stitch pattern and post‐filling strategies were noted to have an effect on the preform and laminate thickness. POLYM. COMPOS., 37:2692–2704, 2016. © 2015 Society of Plastics Engineers  相似文献   
864.
In this study, the competitive separation of lead, cadmium, and nickel ions from aqueous solutions using a commercial activated carbon (AC) has been investigated and optimized using response surface methodology (RSM). The optimal conditions to reach the highest adsorption capacity for these metals were found as follows: initial pH = 6.3, temperature = 56.8°C, and shaking speed = 308 rpm. Under these conditions, the sequence of adsorption capacity toward the metal ions was as follows: Pb (II): 9.44 mg g?1 > Cd (II): 9.37 mg g?1 > Ni (II): 4.52 mg g?1. The effect of shaking speed on the adsorption capacity of AC was higher than the effects of the initial pH and temperature, indicating the more important role of physisorption than chemisorption in the adsorption of these metal ions. This was confirmed by the results of thermodynamic studies. The equilibrium adsorption data were fitted to the Freundlich, Langmuir adsorption isotherm models and the Dubinin–Radushkevich model parameters were evaluated. All the models were tested and all were shown to represent the experimental data satisfactorily. The thermodynamic parameters such as ΔH, ΔS, and ΔG were computed from the experimental data. These values show that the adsorption is endothermic and spontaneous. The positive value of ΔS° indicates increasing of randomness at the solid/liquid interface during the adsorption of metal ions on AC.  相似文献   
865.
A new solvent-impregnated resin (SIR) was constructed using Amberlite XAD-2 and 3-hydroxy-2-naphthoic acid (3H2NA). The SIR was applied for stepwise extraction of Th(IV) and U(VI) from the coexistence ions dissolved in aqueous media at pHs of 3.0 and 7.0, respectively. The U(VI) and Th(IV) ions adsorbed on the minicolumn were consecutively eluted with 0.5 M and 4 M HCl solutions. They were then measured by Arsenazo III at their maximum absorption wavelengths. The characteristic parameters for the successful separation of these ions from the aqueous media were investigated. The SIR showed excellent reproducibility during the 800 subsequent extraction cycles.  相似文献   
866.
Roasting enhances sensory quality of wild almonds (Amygdalus scoparia). The aim of the study was to evaluate the use of microwaves (480 W for 3 or 4 min) in roasting of wild almonds in comparison with traditional Spanish (165 °C for 20 min) and Iranian (soaking in 20 % NaCl in water for 30 min, drying at 60 °C for 2 h and roasting at 135 °C for 20 min) hot‐air processes. The influence of roasting wild almonds on moisture and oil contents, crispness, fatty acid profile, volatile compounds, and odour intensity was investigated. Roasting causes changes in appearance, texture and flavour, due to dehydration, browning, lipid oxidation, and diverse structural changes. The moisture content and hardness of the samples significantly decreased with all roasting methods. Roasting resulted in higher amounts of characteristics aroma compounds and only microwave roasting increased the oil content. The final recommendation is that microwave roasting at 480 W for 4 min led to roasted almonds of high physicochemical [dark and intense colour (L*44.9, a*8.4, and b*19.6), the highest content of total volatile compounds (132 mg kg?1), 85.2 % of unsaturated fatty acids], and sensory (high intensity of “roasted almond” aroma) quality. Microwaves can be used for roasting wild almond as a quick, safe, and economical method.  相似文献   
867.
In this study, glass flakes were incorporated into the spherical nanosilica component of the dental composites and its effect on the mechanical properties of these composites was investigated. To achieve a good interfacial adhesion between matrix resin and fillers, the particles were surface treated with a silane coupling agent (γ-MPS). Composites with different plate-like and spherical nanoparticle contents were prepared and their mechanical properties, including flexural strength, flexural modulus and fracture toughness were measured. The morphology of the particles and fracture surface of the composites were studied by SEM. The distribution of the flakes in the composite was also monitored using EDXA. Statistical analysis of the data was performed with ANOVA and the Tukey’s post hoc test was at a significance level of 0.05. The results showed that the flexural modulus and fracture toughness of specimens were improved with increasing the glass flake content up to 15 vol % which then declined upon further increase due to the stacking of the flakes on each other. A good interfacial adhesion was observed between matrix resin and particles in the SEM micrographs. The results of this study suggest that incorporation of glass flakes into the dental composites containing spherical nanosilica particles may enhance their mechanical properties.  相似文献   
868.
In this study, the synthesis, morphology, and thermal properties of new poly(ether imide)/titania nanohybrid films were investigated. The novel diamine containing functional nitrile groups was prepared in two steps by the nucleophilic substitution reaction and it was fully characterized by different techniques. Reaction of this diamine with pyromellitic dianhydride and 4-aminobenzoic acid gave poly(ether imide) with carboxylic acid end groups. This acid functionalized poly(ether imide) was condense with different amount of TiO2 nanoparticles to provide organic-inorganic bonding, and the flexible films of these hybrid were prepared. The obtained materials were characterized by Fourier transform-infrared spectroscopy, thermogravimetry analysis (TGA), differential scanning calorimetry, X-ray powder diffraction, UV–Vis spectroscopy, field emission-scanning electron microscopy, and transmission electron microscopy (TEM) techniques. TEM of the nanohybrid films with 12% of TiO2 contents confirms well dispersion of nanoparticles in the polymer matrix. TGA data indicated that the thermal behavior of the hybrid materials was increased with an increasing the content of TiO2 nanoparticles. The tensile stress–strain of the hybrids was investigated and the resulting nanocomposites showed good mechanical properties. The permeability and selectivity of the PEI/TiO2 membranes as a function of the titania weight percentage were study and the results indicated that the permeabilities of CO2 and N2 increase with increasing the titania content.  相似文献   
869.
Adsorption of Pb(II) ion by a novel extractant-impregnated resin, EIR, was studied as a function of various experimental parameters using batch adsorption experiments. The new EIR was prepared by impregnating gallocyanine (GCN) onto Amberlite XAD-16 resin beads. The EIR was characterized by nitrogen analysis and SEM micrographs. The new EIR showed excellent selectivity factor values (α) for Pb(II) adsorption respect to other metal ions. The effects of some chemical and physical variables were evaluated and the optimum conditions were found for Pb(II) removal from aqueous solutions. The equilibrium adsorption isotherm was fitted with the Langmuir adsorption model. The maximum adsorption capacity (qmax) of EIR for Pb(II) ions was found to be 367.92 mg g−1. The kinetic studies showed that the intra-particle diffusion is the rate-controlling step. Also, the intra-particle diffusion coefficients, Dip values, were of the order of 10−12 m2 s−1. The values of enthalpy (ΔH°) were positive, which confirms the endothermic nature of adsorption process. Also, the positive entropy changes (ΔS°) were showed that the randomness increased along with the adsorption process. In addition, the obtained negative values of Gibbs free energy (ΔG°) indicated feasible and spontaneous nature of the adsorption process at different temperatures. The new adsorbent was very stable so that it can be successfully used for many consecutive cycles without significant loss in its adsorption capacity.  相似文献   
870.
Green nanocomposites of regenerated cellulose/exfoliated graphite nanosheets films with low nanofiller loadings were prepared using environmentally benign 1-butyl-3-methylimidazolium chloride (BMIMCl) ionic liquid. X-ray diffraction revealed well developed intercalated nanocomposites. The tensile strength and Young's modulus of the prepared nanocomposites were increased by 97.5% and 172% respectively when 0.75 wt.% and 1 wt.% exfoliated graphite nanosheets were added. The results were validated using the Halpin–Tsai model. The exfoliated graphite nanosheets were unidirectionally aligned in the regenerated cellulose parallel to the surface of the nanocomposites as revealed by transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM). Also, the TEM and FESEM revealed uniform dispersion of the exfoliated graphite nanosheets and good interaction between the nanofillers and the matrix. The addition of the exfoliated graphite nanosheets enhanced the thermal stability and reduced the water absorption and diffusivity of the nanocomposites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号