首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1947篇
  免费   113篇
  国内免费   7篇
电工技术   27篇
综合类   9篇
化学工业   663篇
金属工艺   40篇
机械仪表   69篇
建筑科学   48篇
能源动力   146篇
轻工业   261篇
水利工程   18篇
石油天然气   9篇
无线电   168篇
一般工业技术   318篇
冶金工业   35篇
原子能技术   4篇
自动化技术   252篇
  2024年   7篇
  2023年   41篇
  2022年   105篇
  2021年   142篇
  2020年   94篇
  2019年   99篇
  2018年   126篇
  2017年   110篇
  2016年   133篇
  2015年   92篇
  2014年   128篇
  2013年   215篇
  2012年   179篇
  2011年   157篇
  2010年   94篇
  2009年   72篇
  2008年   40篇
  2007年   31篇
  2006年   26篇
  2005年   25篇
  2004年   18篇
  2003年   19篇
  2002年   12篇
  2001年   18篇
  2000年   13篇
  1999年   5篇
  1998年   12篇
  1997年   2篇
  1996年   8篇
  1995年   10篇
  1994年   12篇
  1993年   5篇
  1992年   1篇
  1991年   2篇
  1990年   6篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
排序方式: 共有2067条查询结果,搜索用时 15 毫秒
11.
Implementation of shadows is crucial to enhancement of images in AR environments. Without shadows, virtual objects would look floating over the scene resulting in unrealistic rendering of AR environments. Casting hard shadows would provide only spatial information while soft shadows help improve realism of AR environments. Several algorithms have been proposed to render realistic shadows which often incurred high computational costs. Little attention has been directed towards the balanced trade-off between shadow quality and computational costs. In this study, two approaches are proposed: Quadratic Spline Interpolation (QSI) to soften the outline of the shadow and Detail Multi-Layer (DML) technique to optimize the volume of computations for the generation of soft shadows based on real light sources. QSI estimates boarder hard shadow samples while DML involves three main phases: real light sources estimation, soft shadow production and reduction of the complexity of 3-Dimensional objects’ shadows. To be more precise, a reflective hemisphere is used to capture real light and to create an environment map. The Median Cut algorithm is implemented to locate the direction of real light sources on the environment map. Subsequently, the original hard shadows are retrieved and a sample of multilayer hard shadows is produced where each layer has its unique size and colour. These layers overlap to produce soft shadows based on the real light sources’ directions. Finally, the Level of Details (LOD) algorithm is implemented to increase the efficiency of soft shadows by decreasing the complexity of vertex transformations. The proposed technique is tested using three samples of multilayer hard shadows with varying numbers of light sources generated from the Median Cut algorithm. The experimental results show that the proposed technique successfully produces realistic soft shadows at low computational costs.  相似文献   
12.
Oil palm empty fruit bunch (EFB)‐filled polypropylene (PP) composites were produced. The EFB filler was chemically modified with maleic anhydride (MAH). The effects of the filler size and chemical modification of EFBs on the tensile and dimensional stability properties of EFB–PP composites were studied. The composites with MAH‐treated EFBs showed higher tensile strengths than those with untreated EFBs. This was attributed to the enhanced compatibility between the MAH‐treated EFBs and PP matrix, as shown in a scanning electron microscopy study. Fourier transform infrared analysis showed evidence of C?C and C?O bonds from MAH at 1630 and 1730 cm?1, respectively. The MAH‐treated PP composites showed lower water absorption and thickness swelling than those with untreated EFBs. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 827–835, 2003  相似文献   
13.
The thermal and rheological behaviors of cyclic butylene terephthalate (CBT) were studied with differential scanning calorimetry (DSC) and plate–plate rheometry, respectively. DSC scans were taken at different heating rates. The related first‐heat thermograms indicated crystallization and melting of the resulting poly (butylene terephthalate) (PBT) only at very low heating rate (0.5°C/min). As the crystallization and melting enthalpies were closely matched, one could conclude that the polymerization is essentially athermic. The polymerization was accompanied by a steep increase of the melt viscosity in isothermal rheological tests performed in the temperature range T = 145–210°C. Changes in the viscoelasticity of the polymerizing CBT and crystallizing PBT could be best followed by considering the changes in the phase angle. Viscosity increased with the conversion exponentially in the first approximation. POLYM. ENG. SCI., 46:743–750, 2006. © 2006 Society of Plastics Engineers  相似文献   
14.
Facial features under variant-expressions and partial occlusions could have degrading effect on overall face recognition performance. As a solution, we suggest that the contribution of these features on final classification should be determined. In order to represent facial features contribution according to their variations, we propose a feature selection process that describes facial features as local independent component analysis(ICA) features. These local features are acquired using locally lateral subspace(LLS) strategy.Then, through linear discriminant analysis(LDA) we investigate the intraclass and interclass representation of each local ICA feature and express each feature s contribution via a weighting process. Using these weights, we define the contribution of each feature at local classifier level. In order to recognize faces under single sample constraint, we implement LLS strategy on locally linear embedding(LLE) along with the proposed feature selection. Additionally, we highlight the efficiency of the implementation of LLS strategy. The overall accuracy achieved by our approach on datasets with different facial expressions and partial occlusions such as AR, JAFFE,FERET and CK+ is 90.70%. We present together in this paper survey results on face recognition performance and physiological feature selection performed by human subjects.  相似文献   
15.
Speaker recognition performance in emotional talking environments is not as high as it is in neutral talking environments. This work focuses on proposing, implementing, and evaluating a new approach to enhance the performance in emotional talking environments. The new proposed approach is based on identifying the unknown speaker using both his/her gender and emotion cues. Both Hidden Markov Models (HMMs) and Suprasegmental Hidden Markov Models (SPHMMs) have been used as classifiers in this work. This approach has been tested on our collected emotional speech database which is composed of six emotions. The results of this work show that speaker identification performance based on using both gender and emotion cues is higher than that based on using gender cues only, emotion cues only, and neither gender nor emotion cues by 7.22 %, 4.45 %, and 19.56 %, respectively. This work also shows that the optimum speaker identification performance takes place when the classifiers are completely biased towards suprasegmental models and no impact of acoustic models in the emotional talking environments. The achieved average speaker identification performance based on the new proposed approach falls within 2.35 % of that obtained in subjective evaluation by human judges.  相似文献   
16.
A microarray machine offers the capacity to measure the expression levels of thousands of genes simultaneously. It is used to collect information from tissue and cell samples regarding gene expression differences that could be useful for cancer classification. However, the urgent problems in the use of gene expression data are the availability of a huge number of genes relative to the small number of available samples, and the fact that many of the genes are not relevant to the classification. It has been shown that selecting a small subset of genes can lead to improved accuracy in the classification. Hence, this paper proposes a solution to the problems by using a multiobjective strategy in a genetic algorithm. This approach was tried on two benchmark gene expression data sets. It obtained encouraging results on those data sets as compared with an approach that used a single-objective strategy in a genetic algorithm. This work was presented in part at the 13th International Symposium on Artificial Life and Robotics, Oita, Japan, January 31–February 2, 2008  相似文献   
17.
Gene expression technology, namely microarrays, offers the ability to measure the expression levels of thousands of genes simultaneously in biological organisms. Microarray data are expected to be of significant help in the development of an efficient cancer diagnosis and classification platform. A major problem in these data is that the number of genes greatly exceeds the number of tissue samples. These data also have noisy genes. It has been shown in literature reviews that selecting a small subset of informative genes can lead to improved classification accuracy. Therefore, this paper aims to select a small subset of informative genes that are most relevant for cancer classification. To achieve this aim, an approach using two hybrid methods has been proposed. This approach is assessed and evaluated on two well-known microarray data sets, showing competitive results. This work was presented in part at the 13th International Symposium on Artificial Life and Robotics, Oita, Japan, January 31–February 2, 2008  相似文献   
18.
Accurate location or positioning of people and self-driven devices in large indoor environments has become an important necessity The application of increasingly automated self-operating moving transportation units, in large indoor spaces demands a precise knowledge of their positions. Technologies like WiFi and Bluetooth, despite their low-cost and availability, are sensitive to signal noise and fading effects. For these reasons, a hybrid approach, which uses two different signal sources, has proven to be more resilient and accurate for the positioning determination in indoor environments. Hence, this paper proposes an improved hybrid technique to implement a fingerprinting based indoor positioning, using Received Signal Strength information from available Wireless Local Area Network access points, together with the Wireless Sensor Networks technology. Six signals were recorded on a regular grid of anchor points, covering the research space. An optimization was performed by relative signal weighting, to minimize the average positioning error over the research space. The optimization process was conducted using a standard Quantum Particle Swarm Optimization, while the position error estimate for all given sets of weighted signals was performed using a Multilayer Perceptron (MLP) neural network. Compared to our previous research works, the MLP architecture was improved to three hidden layers and its learning parameters were finely tuned. These experimental results led to the 20% reduction of the positioning error when a suitable set of signal weights was calculated in the optimization process. Our final achieved value of 0.725 m of the location incertitude shows a sensible improvement compared to our previous results.  相似文献   
19.
This paper focuses on developing a simulation model for the analysis of transmission pipeline network system (TPNS) with detailed characteristics of compressor stations. Compressor station is the key element in the TPNS since it provides energy to keep the gas moving. The simulation model is used to create a system that simulates TPNS with different configurations to get pressure and flow parameters. The mathematical formulations for the TPNS simulation were derived from the principles of flow of fluid through pipe, mass balance and compressor characteristics. In order to determine the unknown pressure and flow parameters, a visual C++ code was developed based on Newton–Raphson solution technique. Using the parameters obtained, the model evaluates the energy consumption for various configurations in order to guide for the selection of optimal TPNS. Results from the evaluations of the model with the existing TPNS and comparison with the existing approaches showed that the developed simulation model enabled to determine the operational parameters with less than 10 iterations. Hence, the simulation model could assist in decisions regarding the design and operations of the TPNS.  相似文献   
20.
In this study, Artificial Neural Network (ANN) and Simulated Annealing (SA) techniques were integrated labeled as integrated ANN-SA to estimate optimal process parameters in abrasive waterjet (AWJ) machining operation. The considered process parameters include traverse speed, waterjet pressure, standoff distance, abrasive grit size and abrasive flow rate. The quality of the cutting of machined-material is assessed by looking to the roughness average value (Ra). The optimal values of the process parameters are targeted for giving a minimum value of Ra. It was evidence that integrated ANN-SA is capable of giving much lower value of Ra at the recommended optimal process parameters compared to the result of experimental and ANN single-based modeling. The number of iterations for the optimal solutions is also decreased compared to the result of SA single-based optimization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号