首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2258篇
  免费   150篇
  国内免费   8篇
电工技术   28篇
综合类   10篇
化学工业   734篇
金属工艺   43篇
机械仪表   79篇
建筑科学   57篇
能源动力   189篇
轻工业   320篇
水利工程   21篇
石油天然气   10篇
无线电   192篇
一般工业技术   390篇
冶金工业   42篇
原子能技术   5篇
自动化技术   296篇
  2024年   9篇
  2023年   50篇
  2022年   129篇
  2021年   185篇
  2020年   118篇
  2019年   122篇
  2018年   151篇
  2017年   127篇
  2016年   152篇
  2015年   105篇
  2014年   152篇
  2013年   236篇
  2012年   193篇
  2011年   172篇
  2010年   109篇
  2009年   81篇
  2008年   46篇
  2007年   41篇
  2006年   31篇
  2005年   28篇
  2004年   20篇
  2003年   24篇
  2002年   15篇
  2001年   21篇
  2000年   15篇
  1999年   7篇
  1998年   15篇
  1997年   3篇
  1996年   8篇
  1995年   10篇
  1994年   13篇
  1993年   6篇
  1992年   2篇
  1991年   2篇
  1990年   7篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
排序方式: 共有2416条查询结果,搜索用时 15 毫秒
991.
The study involves the dynamic evolution of the Briggs–Rauscher (BR) reaction in the presence of various surfactants—SDS (sodium dodecyl sulphate) as anionic, CTAB (cetyl trimethylammonium bromide) as cationic and TritonX‐100 [4‐(1,1,3,3‐(tetramethylbutyl) phenyl polyethylene glycol] as a neutral one in single as well as mixed mode conditions (SDS + TX‐100 and CTAB + TX‐100). The reaction has been monitored potentiometrically at 30 °C under CSTR conditions. These surfactants affect the reaction dynamics to an extent which depends on the nature and concentration of the surfactant and the formation of their self‐assemblies. The experimental findings indicate that the oscillatory behavior of the BR reaction in the presence of surfactants is due to the efficacy of organized surfactant assemblies to selectively distribute the key species involved in the reaction, and their interaction with the counter ions in cases of ionic micelles. The study reveals that the evolution of oscillatory behavior is a characteristic feature of the surfactant.  相似文献   
992.
The increasing complexity of software systems in embedded systems or industrial business domains has led to the importance of reliability analysis for current systems. Reliability analysis has become a crucial part of the system development life cycle, and a new approach is needed to enable an early analysis for reliability estimation, especially for the system under design. However, the existing approach neglects the correlation between system resource and system task for estimating system reliability. This subsequently restricts accuracy of the estimation as well as causing difficulties in identifying critical resources and tasks during the design phase. This paper proposes a model-driven system reliability estimation using a scenario-based approach to estimate system reliability and identify its critical resources and system tasks during the design phase. This model is based on the PerFAM model, which can specifically view timing failures through a system scenario. The proposed approach is validated by the application of a sensitivity analysis into one case study. The case study demonstrates an essential relationship between system reliability, as well as both resources and tasks, which ultimately becomes the integral part for a system reliability estimation assessment.  相似文献   
993.
The addition of organic fillers into thermoplastic polymers is an interesting issue, which has had growing consideration and experimentation during the last years. It can give rise to several advantages. First, the cost of these fillers is usually very low. Also, the organic fillers are biodegradable (thus contributing to an improved environmental impact), and finally, some mechanical and thermomechanical properties can be enhanced. In this study, the effect of the addition of different organic fillers on the mechanical properties and processability of an extrusion‐grade polypropylene were investigated. The organic fillers came from natural sources (wood, kenaf, and sago) and were compared to short glass fibers, a widely used inorganic filler. The organic fillers caused enhancements in the rigidity and thermomechanical resistance of the matrix in a way that was rather similar to the one observed for the inorganic filler. A reduction in impact strength was observed for both types of fillers. The use of an adhesion promoter could improve their behavior. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1906–1913, 2005  相似文献   
994.
Nanocomposites containing a thermoplastic blend and organophilic layered clay (organoclay) were produced by melt compounding. The blend composition was kept constant [polyamide 6 (PA6) 70 wt % + polypropylene (PP) 30 wt %], whereas the organoclay content was varied between 0 and 10 wt %. The mechanical properties of the nanocomposites were determined on injection‐molded specimens in both tensile and flexural loading. Highest strength values were observed at an organoclay content of 4 wt % for the blends. The flexural strength was superior to the tensile one, which was traced to the effect of the molding‐induced skin‐core structure. Increasing organoclay amount resulted in severe material embrittlement reflected in a drop of both strength and strain values. The morphology of the nanocomposites was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy‐dispersion X‐ray analysis (EDX), and X‐ray diffraction (XRD). It was established that the organoclay is well dispersed (exfoliated) and preferentially embedded in the PA6 phase. Further, the exfoliation degree of the organoclay decreased with increasing organoclay content. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 175–189, 2004  相似文献   
995.
In this paper, a denoising approach taking into account the statistical properties of the ultrasound image is proposed. In the proposed method, the time correlation between the different frames of a video sequence are taken into consideration to find the maximum a posteriori probability estimate of a noisy pixel. The proposed algorithm is tested on both synthetic and real ultrasound images to verify the effectiveness of the system. The paper provides a model for time correlation of the noise between different frames of the ultrasound video data. To simulate the speckle noise in a natural image, an attempt is made to study the probability density function of speckle noise in an ultrasound video sequence. From our analysis, it is concluded that the speckle noise is multiplicative Gaussian in nature. Certain statistical tests are also conducted to verify the effectiveness of our proposed method. Experimental results show that the proposed despeckling method shows superior performance than its counterparts.  相似文献   
996.
Silica aerogels with a surface area as high as 773?m2?g?1 and a density of 0.077?g?cm?3 were produced from rice husk via sol–gel process and ambient pressure drying. A particulate composite material was prepared by adding silica aerogel particles of three different particle sizes (powder, granules and bead) to unsaturated polyester resin with a fixed volume fraction of 30%. Thermogravimetric and thermal conductivity studies revealed that silica aerogel composites were having higher thermal stability and thermal insulation than the neat resin. It was suggested that the preservation of aerogel pores from resin intrusion is important for better thermal properties. Larger silica aerogel particles have more porous area (unwetted region) which results in a lower degradation rate and lower thermal conductivity of the base polymer. However, the addition of silica aerogel into resin has reduced the tensile modulus of the polymer matrix where smaller particle size displayed higher toughness than those with bigger particle size.  相似文献   
997.
In this work we assess the significant electrooptic properties of a novel chalcone derivative 3-(4-chlorophenyl)-1-(pyridin-3-yl) prop-2-en-1-one using a computational approach. The ground-state molecular geometry was optimized, and geometrical parameters and vibrational modes are established and found to be in strong correlation with experimental results. The excitation energy is observed to be 326 nm (3.8 eV), calculated at the TD/B3LYP/6-31G level (stands for time dependent/Becke’s three Lee-Yang-Parr/basis set). Additionally, a unique insight was gained on a number of properties of the molecular levels such as the HOMO-LUMO gap (i.e. \({\sim } 4\,\hbox {eV}\)) and electrostatic potential maps. The potential applications of the 3-(4-chlorophenyl)-1-(pyridin-3-yl)prop-2-en-1-one (CPP) molecule in nonlinear optics are confirmed by second and third harmonic generation studies at five different characteristic wavelengths. The static and dynamic polarizability are found to be many-fold higher than that of urea. The second and third harmonic generation values of the titled molecule are found to be 56 and 158 times higher than standard urea molecule, respectively, computed at same wavelength (i.e. 1064.13 nm). From these studies it is clear that the material possesses superior properties and could be applied in optoelectronic device fabrications.  相似文献   
998.
We report on the enhanced capacitive properties of a copper(I) oxide nanoparticle (Cu2O NP)-decorated multiwalled carbon nanotube (MWCNT) forest with nitrogen (N) doping. A careful in situ solid-state dewetting and plasma doping method was developed that ensured homogeneous decoration and contamination-free Cu2O NPs with N doping on the nanotube sidewalls. The morphology and structure of the hybrid materials were characterised by scanning electron microscopy, transmission electron microscopy, energy-dispersive spectroscopy, Raman spectroscopy and X-ray photoemission spectroscopy. The electrochemical performance of the hybrid materials was investigated by cyclic voltammetry and galvanostatic charge/discharge tests in a 0.1 M Na2SO4 electrolyte. The electrochemical tests demonstrated that the Cu2O NP/N-MWCNT electrode exhibits a specific capacitance up to 132.2 F g?1 at a current density of 2.5 A g?1, which is 30% higher than that of the pure MWCNT electrode. Furthermore, the electrode could retain the specific capacitance at 85% stability over 1000 cycles. These observations along with the simple assembly method for the hybrid materials suggest that the Cu2O NP/N-MWCNT could be a promising electrode for supercapacitor applications.  相似文献   
999.

Recent trends in optoelectronics still need a highly efficient photodetector based on p-type metal oxide semiconductors. This work stands with the improvement in the performance of CuO thin films via doping with different metals into the thin films. The CuO thin films were successfully doped with 1 wt% of X (X?=?Al, Ga, and In) by spray pyrolysis method. The prepared doped CuO thin films were characterized to interpret the structural, morphological, and elemental characteristics using advanced techniques. These doped CuO thin films were subjected to study the photodetection ability by analyzing optoelectronic properties. The doping also tuned the optical and electrical properties. Among the fabricated photodetectors, the Al-doped CuO detector shows a maximum photocurrent. The CuO:Al (1.0%) thin film exhibits a high photocurrent of 2.59 × 10?6 A, the responsivity of 2.82 × 10??1 AW??1, the external quantum efficiency of 66%, and the detectivity of 1.45 × 1010 Jones. Compared to the other thin films, Al doping has remarkably reduced the bandgap and shows a good photosensing activity that may be due to an increase in charge carriers. These outcomes provide a way to assemble good photodetectors and tune their properties in a wide range.

  相似文献   
1000.
The effect of friction forces between the test specimen and its bottom supports on the mode II fracture toughness values obtained using the semicircular bend (SCB) specimen is investigated. First, a number of experiments were conducted on SCB specimen in order to determine the mode II fracture toughness of polymethyl methacrylate (PMMA) according to the conventional approaches available in the literature. Three different types of supports that have been frequently employed by researchers in recent years were used to evaluate the effect of support type on the fracture loads. It was found that the friction forces between the supports and the SCB specimen have a significant effect on the value of mode II fracture toughness measured using the SCB samples. Then, the specimen was simulated using finite element method for more detailed investigation on the near crack tip stress field evolution when friction forces increase between the supports and the SCB specimen. The finite element results confirmed that the type of support affects not only the stress intensity factors KI and KII but also the T‐stress. The experimental and numerical results showed that the use of the crack tip parameters available in literature for frictionless contact between the supports and the SCB specimen can result in significant errors when the mode II experiments are performed by using the fixed or roller‐in‐grove types of supports.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号