Hybrid robotic systems necessitate a new integrated approach to the design of tasks and the performance requirements for human operators and robots. The presence of operators in hybrid work stations adds to the complexity and unpredictability of such design requirements. An important component of the hybrid system design is the integration of both human and robot sensory capabilities for task completion. A model for the integration of human and robot sensory information collection, processing, and action is presented. Robot sensory systems are evaluated with respect to the safety of operators within a hybrid work station. Four sensory technologies of optical (vision), sonar, capacitance, and infrared are compared. Optically-based and infrared sensors appear to be the most promising in terms of the safety and efficiency of hybrid work stations. 相似文献
This article extends a hybrid evolutionary algorithm to cope with the feeder reconfiguration problem in distribution networks. The proposed method combines the Self-Adaptive Modified Particle Swarm Optimization (SAMPSO) with Modified Shuffled Frog Leaping Algorithm (MSFLA) to proceed toward the global solution. As with other population-based algorithms, PSO has parameters which should be tuned to have a suitable performance. Thus, a self-adaptive framework is proposed to adjust the parameters dynamically. In SAMPSO, the PSO learning factors are considered to be the new control variables and are changed in the evolutionary process. To enhance the quality of the solutions, the SAMPSO is combined with MSFLA and a new hybrid algorithm is proposed to minimize the electrical energy losses of the distribution system by feeder reconfiguration. The effectiveness of the proposed method is demonstrated through two test systems. 相似文献
An extremely scalable lattice Boltzmann (LB)–cellular automaton (CA) model for simulations of two-dimensional (2D) dendritic solidification under forced convection is presented. The model incorporates effects of phase change, solute diffusion, melt convection, and heat transport. The LB model represents the diffusion, convection, and heat transfer phenomena. The dendrite growth is driven by a difference between actual and equilibrium liquid composition at the solid–liquid interface. The CA technique is deployed to track the new interface cells. The computer program was parallelized using the Message Passing Interface (MPI) technique. Parallel scaling of the algorithm was studied and major scalability bottlenecks were identified. Efficiency loss attributable to the high memory bandwidth requirement of the algorithm was observed when using multiple cores per processor. Parallel writing of the output variables of interest was implemented in the binary Hierarchical Data Format 5 (HDF5) to improve the output performance, and to simplify visualization. Calculations were carried out in single precision arithmetic without significant loss in accuracy, resulting in 50% reduction of memory and computational time requirements. The presented solidification model shows a very good scalability up to centimeter size domains, including more than ten million of dendrites. 相似文献
Wireless mesh networks (WMNs) introduce a new type of network that has been applied over the last few years. One of the most important developing issues in WMNs is multicast routing, which is a key technology that provides dissemination of data to a group of members in an efficient way. In this article, after an introduction about the structure of a WMN, multicast routing algorithms and protocols in WMNs are surveyed in a detailed and efficient manner. Moreover, effort is made to scale the study into one of the important potential capabilities of multicast routing mechanisms in WMNs, which is taking advantage of using different channels and radios association. While nodes in a single-radio mesh network operating on single-channel have restrictions for capacity, equipping mesh routers with multiple radios using multiple channels can decrease the intention of capacity problem as well as increase the aggregate bandwidth available to the network and improving the throughput. Hence, the purpose of channel assignment is to decrease the interferences while increasing the network capacity and keeping the connectivity of the network. Therefore, this article investigates the multicast protocols considering a definition of three types of WMNs, based on channel-radio association including SRSC, SRMC and MRMC. In its follow, a classification for multicast routing algorithms regarding the achieved optimal solutions will be presented. Finally, a study of MRMC and its relevant problems will be offered, considering the joint channel assignment and the multicast tree construction problem. 相似文献
ABSTRACTThe freely available global and near-global digital elevation models (DEMs) have shown great potential for various remote sensing applications. The Shuttle Radar Topography Mission (SRTM) data sets provide the near-global DEM of the Earth’s surface obtained using the interferometry synthetic aperture radar (InSAR). Although free accessibility and generality are the advantages of these data sets, many applications require more detailed and accurate DEMs. In this paper, we proposed a modified and advanced polarimetry-clinometry algorithm for improving SRTM topography model which requires only one set of polarimetric synthetic aperture radar (PolSAR) data. The azimuth and range slope components estimation based on polarization orientation angle (POA) shifts and the intensity-based Lambertian model formed the bases of the proposed method. This method initially compensated for the polarimetry topography effect corresponding to SRTM using the DEM-derived POA. In the second step, using a modified algorithm, POA was obtained from the compensated PolSAR data. The POA shifts by the azimuth and range slopes’ variations based on the polarimetric model. In addition to the polarimetric model, a clinometry model based on the Lambertian scattering model related to the terrain slope was employed. Next, two unknown parameters, i.e. azimuth and range slope values, were estimated in a system of equations by two models from the compensated PolSAR data. Azimuth and range slopes of SRTM were enhanced by PolSAR-derived slopes. Finally, a weighted least-square grid adjustment (WLSG) method was proposed to integrate the enhanced slopes’ map and estimate enhanced heights. The National Aeronautics and Space Administration Jet Propulsion Laboratory (NASA JPL) AIRSAR was utilized to illustrate the potential of the proposed method in SRTM enhancement. Also, the InSAR DEM was employed for evaluation experiments. Results showed that the accuracy of SRTM DEM is improved up to 2.91 m in comparison with InSAR DEM. 相似文献
A wideband microstrip reflectarray antenna (RA) is proposed using a novel unit‐cell for X‐band applications. The unit‐cell is composed of a logarithmic toothed microstrip element and two‐variable phase‐delay lines (PDLs) for the required phase compensation in the RA. By adjusting the lengths of the PDLs, a smooth and almost linear phase variations of 627° is achieved at the frequency of 10 GHz. Based on the proposed element, a 144‐element center‐fed RA with dimensions of 216 mm × 216 mm is designed at 10 GHz and simulated using CST software. Then, a fabricated prototype RA is tested to validate the design approach. The maximum measured gain is 25.3 dB at 10.4 GHz, whereas the gain is 24.6 dB with 44.2% aperture efficiency at the design frequency of 10 GHz. Also, the measured gain frequency characteristic shows the 1 and 3‐dB gain bandwidths of 24.8% and 42.3%, respectively, and the measured radiation patterns verify the simulated ones as well. 相似文献
Resource sharing, as a coordination mechanism, can mitigate disruptions in supply and changes in demand. It is particularly crucial for platelets because they have a short lifespan and need to be transferred and allocated within a limited time to prevent waste or shortages. Thus, a coordinated model comprised of a mixed vertical-horizontal structure, for the logistics of platelets, is proposed for disaster relief operations in the response phase. The aim of this research is to reduce the wastage and shortage of platelets due to their critical role in wound healing. We present a bi-objective location-allocation robust possibilistic programming model for designing a two-layer coordinated organization strategy for multi-type blood-derived platelets under demand uncertainty. Computational results, derived using a heuristic ε-constraint algorithm, are reported and discussed to show the applicability of the proposed model. The experimental results indicate that surpluses and shortages in platelets remarkably declined following instigation of a coordinated disaster relief operation. 相似文献
Fuzzy rule-based systems (FRBSs) are well-known soft computing methods commonly used to tackle classification problems characterized by uncertainties and imprecisions. We propose a hybrid intelligent fruit fly optimization algorithm (FOA) to generate and classify fuzzy rules and select the best rules in a fuzzy if–then rule system. We combine a FOA and a heuristic algorithm in a hybrid intelligent algorithm. The FOA is used to create, evaluate and update triangular fuzzy rule-based and orthogonal fuzzy rule-based systems. The heuristic algorithm is used to calculate the certainty grade of the rules. The parameters in the proposed hybrid algorithm are tuned using the Taguchi method. An experiment with 27 benchmark datasets and a tenfold cross-validation strategy is designed and carried out to compare the proposed hybrid algorithm with nine different FRBSs. The results show that the hybrid algorithm proposed in this study is significantly more accurate than the nine competing FRBSs.