Canal section design with minimum cost, which can be considered as an objective function, involves minimization of total costs per unit length of the canal, including direct costs of per cubic meter earthworks and per meter canal lining and indirect costs of water losses through canal seepage and evaporation. Since the costs (both direct and indirect) are associated with the canal geometry and dimensions, it is possible to lower them by optimization of the mentioned objective function. For this purpose, some constraints were subjected and considered to solve the problem. Flow discharge, as the main constraint, was considered in addition to the minimum permissible velocity and Froude’s number, as subsidiary constraints. MATLAB programming software was used to demonstrate and run the optimization algorithm. The results finally were illustrated in forms of dimensionless graphs, which simplify the optimum design of canal dimensions with minimum cost per meter length. Comparing the results with other similar studies, however show the importance and role of earthworks and lining costs, as well as including the subsidiary constraints in the optimization process. 相似文献
Water scarcity is one of the problems affecting people’s livelihoods in arid and semi-arid areas, requiring a sustainable balance between water demands and water resources. This study was carried out to assess temporal and spatial distribution of water supply and demand in order to help managers to overcome water scarcity in Jiroft basin, southeastern Iran. Spatial supply and demand of water were mapped and standardized rainfall index (SPI) was used to assess drought for a 20 years period (1994–2014). Supply and demand of water were matched in 23% of the basin area, mostly concentrated in the cold zones. Water supply was reduced up to 80% during dry years, declining water supply-demand matching to 5% of the basin area. Shrub-grass rangelands and deciduous woodlands were the most valuable land covers for conservation with $ 1,100 and $ 936 per hectare water prices respectively. Water value dropped more than 72% in mismanaged ecosystems (p?<?0.01). Our finding showed that water supply-demand ratio can be used as a proxy of ecosystem health and water-yield, which can provide a good information for water resources managers to reduce the threats of water scarcity in arid and semi-arid regions.
The significant number of oil reservoir are bitumen and heavy oil. One of the approaches to enhance oil recovery of these types of reservoir is dilution of reservoir oil by injection of a solvent such as tetradecane into the reservoirs to modify viscosity and density of reservoir fluids. In this investigation, an effective and robust estimating algorithm based on fuzzy c-means (FCM) algorithm was developed to predict density of mixtures of Athabasca bitumen and heavy n-alkane as function of temperature, pressure and weight percent of the solvent. The model outputs were compared to experimental data from literature in different conditions. The coefficients of determination for training and testing datasets are 0.9989 and 0.9988. The comparisons showed that the proposed model can be an applicable tool for predicting density of mixtures of bitumen and heavy n-alkane. 相似文献
The utility of a seven-step systems analysis model is demonstrated. This analysis addresses the safety and ergonomics problems associated with implementing video display terminals (VDTs). The seven-step analysis model consists of: defining the problems; setting the objectives and developing an evaluation criteria table; developing alternatives; modeling alternatives; evaluating alternatives; selecting an alternative; and planning for implementation. A detailed diagrammatic analysis of these steps is presented. Solutions to VDT problems are suggested using data gathered from case studies 相似文献
We consider multistage automatic transfer lines with unreliable stages, finite interstage buffer storages, and possible scrapping of workpieces. It is assumed that the first stage never idles and the last stage never becomes blocked. Assuming that uptimes and downtimes of a stage are geometrically distributed, an approximate model is developed to compute different performance measures of the transfer line. The results obtained through the approximate model are compared to the exact results for three-stage transfer lines and to simulation results for longer transfer lines. It is observed that the approximate results are good in almost all cases considered. 相似文献
Poly(glycerol sebacate) (PGS) is a new biodegradable polymer with good biocompatibility used in many fields of biomedicine and drug delivery. Sunitinib‐loaded PGS/gelatine nanoparticles were prepared by the de‐solvation method for retinal delivery and treatment of diabetic retinopathy. The nanoparticles were characterised by Fourier‐transform infrared and differential scanning calorimetry. The effects of different formulation variables including drug‐to‐carrier ratio, gelatine‐to‐PGS ratio, and glycerine‐to‐sebacate ratio were assessed on the encapsulation efficiency (EE%), particle size, release efficiency (RE), and zeta potential of the nanoparticles. The in vitro cytotoxicity of PGS/gelatine nanoparticles was studied on L929 cells. Draize test on rabbit eyes was also done to investigate the possible allergic reactions caused by the polymer. Glycerine/sebacic acid was the most effective parameter on the EE and RE. Gelatine‐to‐PGS ratio had the most considerable effect on the particle size while the RE was more affected by the glycerine/sebacic acid ratio. The optimised formulation (S1 G0.7 D21.2) exhibited a particle size of 282 nm, 34.6% EE, zeta potential of −8.9 mV, and RE% of about 27.3% for drug over 228 h. The 3‐(4,5‐dimethylthuazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay indicated PGS/gelatine nanoparticles were not cytotoxic and sunitinib‐loaded nanoparticles were not toxic at concentrations <36 nM.Inspec keywords: polymers, differential scanning calorimetry, toxicology, drug delivery systems, solvation, eye, encapsulation, particle size, drugs, biodegradable materials, nanofabrication, nanomedicine, nanoparticles, gelatin, Fourier transform infrared spectraOther keywords: gelatine‐to‐PGS ratio, glycerine‐to‐sebacate ratio, particle size, zeta potential, sunitinib‐loaded nanoparticles, biodegradable polymer, retinal delivery, differential scanning calorimetry, drug‐to‐carrier ratio, allergic reactions, physicochemistry, cytotoxicity, poly(glycerol sebacate) nanoparticles, sunitinib ocular delivery, drug delivery, sunitinib‐loaded PGS‐gelatine nanoparticles, Fourier‐transform, in vitro cytotoxicity, biocompatibility, Draize test, rabbit eyes, 3‐(4,5‐dimethylthuazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay相似文献
A method for identification of time-varying linear systems and bilinear systems is proposed. The method is based upon expanding various time functions in the system as their truncated Fourier series, using the operational matrices for integration and product and hence reducing the problem into a set of algebraic equations. The method is computationally attractive, and applications are demonstrated through illustrative examples. 相似文献
Operators and users of robotic systems perform tasks which require close proximity to dangerous moving parts. Two experiments were performed to assess human perception of safe robot arm speed and idling times. Experiment 1 was designed to determine the maximum safe speed of robots. Subjects were asked to adjust the robot speeds. Perceived safe speeds were indicated for two different types of robots. Experiment 2 was designed to determine safe programmed idle time of robots. Subjects were asked to enter the robot work envelope when a programmed idle was perceived to be caused by a malfunction. Safe idle times were reported for two different robot speeds during operational cycles. 相似文献
The measurement of viscoelastic properties of soft tissues has become a research interest with applications in the stiffness estimation of soft tissues, sorting and quality control of postharvest fruit, and fruit ripeness estimation. This paper presents a tactile sensor configuration to estimate the stiffness properties of soft tissues, using fruit as case study. Previous stiffness-measuring tactile sensor models suffer from unstable and infinite sensor outputs due to irregularities and inclination angles of soft tissue surfaces. The proposed configuration introduces two low stiffness springs at the extreme ends of the sensor with one high stiffness spring in-between. This study also presents a closed form mathematical model that considers the maximum inclination angle of the tissue’s (fruit) surface, and a finite element analysis to verify the mathematical model, which yielded stable sensor outputs. A prototype of the proposed configuration was fabricated and tested on kiwifruit samples. The experimental tests revealed that the sensor’s output remained stable, finite, and independent on both the inclination angle of the fruit surface and applied displacement of the sensor. The sensor distinguished between kiwifruit at various stiffness and ripeness levels with an output error ranging between 0.18 % and 3.50 %, and a maximum accuracy of 99.81 %, which is reasonable and competitive compared to previous design concepts.
Adsorption of pure carbon dioxide and methane was examined on activated carbon prepared from pine cone by chemical activation with H3PO4 to determine the potential for the separation of CO2 from CH4. The prepared adsorbent was characterized by N2 adsorption-desorption, elemental analysis, FTIR, SEM and TEM. The equilibrium adsorption of CO2 and CH4 on AC was determined at 298, 308 and 318 K and pressure range of 1–16 bar. The experimental data of both gases were analyzed using Langmuir and Freundlich models. For CO2, the Langmuir isotherm presented a perfect fit, whereas the isotherm of CH4 was well described by Freundlich model. The selectivity of CO2 over CH4 by AC (CO2: CH4=50: 50, 298K, 5 bar), predicted by ideal adsorbed solution theory (IAST) model, was achieved at 1.68. These data demonstrated that pine cone-based AC prepared in this study can be successfully used in separation of CO2 from CH4. 相似文献