首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5383篇
  免费   481篇
  国内免费   55篇
电工技术   60篇
综合类   21篇
化学工业   1254篇
金属工艺   74篇
机械仪表   263篇
建筑科学   101篇
矿业工程   8篇
能源动力   330篇
轻工业   716篇
水利工程   65篇
石油天然气   31篇
武器工业   1篇
无线电   697篇
一般工业技术   1216篇
冶金工业   81篇
原子能技术   51篇
自动化技术   950篇
  2024年   37篇
  2023年   212篇
  2022年   483篇
  2021年   757篇
  2020年   461篇
  2019年   520篇
  2018年   475篇
  2017年   393篇
  2016年   389篇
  2015年   242篇
  2014年   289篇
  2013年   382篇
  2012年   228篇
  2011年   287篇
  2010年   162篇
  2009年   137篇
  2008年   88篇
  2007年   86篇
  2006年   33篇
  2005年   24篇
  2004年   34篇
  2003年   25篇
  2002年   16篇
  2001年   7篇
  2000年   10篇
  1999年   13篇
  1998年   17篇
  1997年   9篇
  1996年   11篇
  1995年   16篇
  1994年   7篇
  1993年   10篇
  1992年   8篇
  1991年   7篇
  1990年   1篇
  1989年   5篇
  1988年   4篇
  1987年   5篇
  1986年   1篇
  1985年   6篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1961年   1篇
排序方式: 共有5919条查询结果,搜索用时 15 毫秒
121.
The presence of phyto-hormones in plants at relatively low concentrations plays an indispensable role in regulating crop growth and yield. Salt stress is one of the major abiotic stresses limiting cotton production. It has been reported that exogenous phyto-hormones are involved in various plant defense systems against salt stress. Recently, different studies revealed the pivotal performance of hormones in regulating cotton growth and yield. However, a comprehensive understanding of these exogenous hormones, which regulate cotton growth and yield under salt stress, is lacking. In this review, we focused on new advances in elucidating the roles of exogenous hormones (gibberellin (GA) and salicylic acid (SA)) and their signaling and transduction pathways and the cross-talk between GA and SA in regulating crop growth and development under salt stress. In this review, we not only focused on the role of phyto-hormones but also identified the roles of GA and SA responsive genes to salt stress. Our aim is to provide a comprehensive review of the performance of GA and SA and their responsive genes under salt stress, assisting in the further elucidation of the mechanism that plant hormones use to regulate growth and yield under salt stress.  相似文献   
122.
123.
124.
In this paper, we present a new technique for mammogram enhancement using fast dyadic wavelet transform (FDyWT) based on lifted spline dyadic wavelets and normalized Tsallis entropy. First, a mammogram image is decom- posed into a multiscale hierarchy of low-subband and high-subband images using FDyWT. Then noise is suppressed using normalized Tsallis entropy of the local variance of the modulus of oriented high-subband images. After that, the wavelet coefficients of high-subbands are modified using a non-linear operator and finally the low-subband image at the first scale is modified with power law transformation to suppress background. Though FDyWT is shift-invariant and has better poten- tial for detecting singularities like edges, its performance depends on the choice of dyadic wavclcts. On the other hand, the nulnber of vanishing moments is an important characteristic of dyadic wavelets for singularity analysis because it provides an upper bound measurement for singularity characterization. Using lifting dyadic schemes, we construct lifted spline dyadic wavelets of different degrees with increased number of vanishing moments. We also examine the effect of these wavelets on mammogram enhancement. The method is tested on mammogram images, taken from MIAS (Mammographic Image Analysis Society) database, having various background tissue types and containing different abnormalities. The comparison with tile state-of-the-art contrast enhancement methods reveals that the proposed method performs better and the difference is statistically significant.  相似文献   
125.
Bearings play a crucial role in rotational machines and their failure is one of the foremost causes of breakdowns in rotary machinery. Their functionality is directly relevant to the operational performance, service life and efficiency of these machines. Therefore, bearing fault identification is very significant. The accuracy of fault or anomaly detection by the current techniques is not adequate. We propose a data mining-based framework for fault identification and anomaly detection from machine vibration data. In this framework, to capture the useful knowledge from the vibration data stream (VDS), we first pre-process the data using Fast Fourier Transform (FFT) to extract the frequency signature and then build a compact tree called SAFP-tree (sliding window associated frequency pattern tree), and propose a mining algorithm called SAFP. Our SAFP algorithm can mine associated frequency patterns (i.e., fault frequency signatures) in the current window of VDS and use them to identify faults in the bearing data. Finally, SAFP is further enhanced to SAFP-AD for anomaly detection by determining the normal behavior measure (NBM) from the extracted frequency patterns. The results show that our technique is very efficient in identifying faults and detecting anomalies over VDS and can be used for remote machine health diagnosis.  相似文献   
126.

Emotion recognition from speech signals is an interesting research with several applications like smart healthcare, autonomous voice response systems, assessing situational seriousness by caller affective state analysis in emergency centers, and other smart affective services. In this paper, we present a study of speech emotion recognition based on the features extracted from spectrograms using a deep convolutional neural network (CNN) with rectangular kernels. Typically, CNNs have square shaped kernels and pooling operators at various layers, which are suited for 2D image data. However, in case of spectrograms, the information is encoded in a slightly different manner. Time is represented along the x-axis and y-axis shows frequency of the speech signal, whereas, the amplitude is indicated by the intensity value in the spectrogram at a particular position. To analyze speech through spectrograms, we propose rectangular kernels of varying shapes and sizes, along with max pooling in rectangular neighborhoods, to extract discriminative features. The proposed scheme effectively learns discriminative features from speech spectrograms and performs better than many state-of-the-art techniques when evaluated its performance on Emo-DB and Korean speech dataset.

  相似文献   
127.
128.
Taxonomy of the genus Berberis is quite complex, due to overlapping morphological characters, making it very difficult to differentiate the species within the genus. In order to resolve this taxonomic complexity, the foliar anatomy of 10 Berberis L. species was carried out, for the first time from Pakistan, using light microscopy (LM). Significant variation in terms of epidermal cells shape, size, cell wall pattern, and stomata type was observed. B. baluchistanica has the largest epidermal cells, Adaxial: length = 45–(53.9 ± 3.6)–62.5 μm; and width = 22.5–(26.3 ± 1.3)–30 μm; Abaxial: length = 37.5–(43.25 ± 2.5)–50 μm; and width = 20–(22.6 ± 0.8)–25. The highest number of stomata was observed in B. glaucocarpa as 62 on the abaxial surface while the lowest number of stomata was recorded in B. baluchistanica as 8 on the adaxial surface. Of 10 investigated species, 6 possess anomocytic type stomata, while 2 species that is, B. aitchisonii and B. parkeriana have both anomocytic and anisocytic stomata while B. baluchistanica and B. calliobotrys have only paracytic type stomata. The highest number of cells per unit area was present on the adaxial surface of B. calliobotrys ranging from 245–(252.4)–260 followed by B. parkeriana with 209–(227.8)–250 on the abaxial surface. Stomatal index (SI) also varied considerably and was the lowest (2.6) percentage in B. baluchistanica and highest (31.9) percentage in B. kunawurensis. A taxonomic key based on micro‐morphological characters is provided for species identification.  相似文献   
129.
The present study was conducted on characterization of morpho‐anatomical, phytochemical, and bio‐elemental analysis of root, stem, and leaf of Verbascum thapsus. Morphologically Verbascum is a biennial plant that flowers for a month and a half in mid‐ to late summer. Various organoleptic features of root, leaf, and stem were recorded. Anatomically the T. S of the root, stem, and leaf showed a typical dicot histological differentiation. Leaf possessed anomocytic stomata, crescent shape vascular bundles, and covered with long and stellate type trichomes while, stem contained collateral type of vascular bundles and a well‐developed pith to store phytochemicals responsible for various pharmacological activities. The powder drug study through scanning electron microscopy revealed the presence of various types of tissues. Branched, tree like and stellate trichomes in root and leaf help in absorption and reduce loss of water. These anatomical features are responsible for the survival of the plant as biennial. Four macro elements (Na, K, Ca, and Mg) and seven microelements (Cr, Cu, Fe, Mn, Ni, Zn, and Cd) and their concentrations in ppm were also studied using Atomic Absorption Spectroscopy. Phytochemical screening of methanolic extract showed existence of various secondary metabolites, while mucilage and anthraquinones was not detected. The present study helps to understand the taxonomic identification of the plant based on morpho‐anatomical features and throws the attention of the researchers to carry out the work for developing its various formulations, which can ultimately be beneficial for the human beings as well as animals.  相似文献   
130.
Shape from focus (SFF) is a widely used passive optical method for 3D shape reconstruction. In SFF, a focus measure, which is used to estimate the relative focus level, plays a critical role in depth estimation. In this article, we present a new focus measure for accurate 3D shape estimation in optical microscopy based on the analysis of 3D structure tensor. First, the 3D tensors are computed from the input image sequence for each pixel. Then, each tensor is decomposed into point, curve, and surface tensors by decomposing tensors into eigenvalues and eigenvectors. Finally, the surfaceness is used to measure the quality of sharpness. The proposed focus measure provides accurate focus values and better resistance against noise. The proposed measure is evaluated by conducting experiments using image sequences of simulated and microscopic real objects. The comparative analysis demonstrates the effectiveness of the proposed focus measure in recovering 3D shape.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号