The results are presented of experimental investigations into liquid metal heat transfer performed by the joint research group consisting of specialist in heat transfer and hydrodynamics from NIU MPEI and JIHT RAS. The program of experiments has been prepared considering the concept of development of the nuclear power industry in Russia. This concept calls for, in addition to extensive application of water-cooled, water-moderated (VVER-type) power reactors and BN-type sodium cooled fast reactors, development of the new generation of BREST-type reactors, fusion power reactors, and thermonuclear neutron sources. The basic coolants for these nuclear power installations will be heavy liquid metals, such as lead and lithium-lead alloy. The team of specialists from NRU MPEI and JIHT RAS commissioned a new RK-3 mercury MHD-test facility. The major components of this test facility are a unique electrical magnet constructed at Budker Nuclear Physics Institute and a pressurized liquid metal circuit. The test facility is designed for investigating upward and downward liquid metal flows in channels of various cross-sections in a transverse magnetic field. A probe procedure will be used for experimental investigation into heat transfer and hydrodynamics as well as for measuring temperature, velocity, and flow parameter fluctuations. It is generally adopted that liquid metals are the best coolants for the Tokamak reactors. However, alternative coolants should be sought for. As an alternative to liquid metal coolants, molten salts, such as fluorides of lithium and beryllium (so-called FLiBes) or fluorides of alkali metals (so-called FLiNaK) doped with uranium fluoride, can be used. That is why the team of specialists from NRU MPEI and JIHT RAS, in parallel with development of a mercury MHD test facility, is designing a test facility for simulating molten salt heat transfer and hydrodynamics. Since development of this test facility requires numerical predictions and verification of numerical codes, all examined configurations of the MHD flow are also investigated numerically. 相似文献
Currently, power plants based on hydrogen—oxygen fuel cells are widely used. The advantages of such electrochemical generators are environmental friendliness, efficiency, and a wide power-output range. Some components of such engines are still being developed. One of these components is the working gasrecirculation system, which increases the efficiency of an installation. In addition, this system helps support the water balance in a fuel-cell stack by removing the water that occurs in the cavities of the membrane—electrode block as a result of the electrochemical reaction. With consideration of the complexity of the reactions that occur in an installation, an automatic control system (ACS) is necessary for the gas recirculation system. This article deals with the organization of an automatic control system based on a microprocessor controller, sensors, and actuators, which implements control algorithms for the components of the gas recirculation system. 相似文献
Titanium alloys are processed to develop a wide range of microstructure configurations and therefore material properties. While these properties are typically measured experimentally, a framework for property prediction could greatly enhance alloy design and manufacturing. Here a microstructure-sensitive framework is presented for the prediction of strength and ductility as well as estimates of the bounds in variability for these properties. The framework explicitly considers distributions of microstructure via new approaches for instantiation of structure in synthetic samples. The parametric evaluation strategy, including the finite element simulation package FEpX, is used to create and test virtual polycrystalline samples to evaluate the variability bounds of mechanical properties in Ti-6Al-4V. Critical parameters for the property evaluation framework are provided by measurements of single crystal properties and advanced characterization of microstructure and slip system strengths in 2D and 3D. Property distributions for yield strength and ductility are presented, along with the validation and verification steps undertaken. Comparisons between strain localization and slip activity in virtual samples and in experimental grain-scale strain measurements are also discussed.
The present investigations focused on the thermal oxidation of two variants of MAR-M246 alloy having the same contents of Ta and Nb in at. pct, considering the effects of total replacement of Ta by Nb. The alloys were produced by investment casting using high purity elements in induction furnace under vacuum atmosphere. The alloys were oxidized pseudo-isothermally at 800 °C, 900 °C and 1000 °C up to 1000 hours under lab air. Protective oxidation products growing on the surface of the oxidized samples were mainly Al2O3, Cr2O3. Other less protective oxide such as spinels (NiCr2O4 and CoCr2O4) and TiO2 were also detected as oxidation products. The conventional alloy exhibited slight internal oxidation at 800 °C and an enhanced resistance at 900 °C and 1000 °C. The Nb-modified alloy presented an exacerbated internal oxidation and nitridation at 900 °C and 1000 °C and an enhanced resistance at 800 °C. At 1000 °C, Nb-modified alloy was particularly affected by excessive spalling as the main damage mechanisms. From a kinetic point of view, both alloys exhibit the same behavior at 800 °C and 900 °C, with kp values typical of alumina forming alloys (2 × 10−14 to 3.6 × 10−13 g2 cm−4 s−1). However, Ta modified alloys exhibited superior oxidation resistance at 1000 °C when compared to the Nb modified alloy due to better adherence of the protective oxide scale.
Metallurgist - The article presents the results of plastometric studies on hot deformation and studies on the hardening curves in cold deformation of EP450-Sh (12H12M1BFR-Sh) and EP823-Sh... 相似文献
Metallurgist - The article provides a brief assessment of the current state of power supply units at metallurgical plants and prospects for their future development. The principal power-supply... 相似文献
Russian Journal of Non-Ferrous Metals - Laser cladding, which is characterized by the minimal thermal impact on the substrate, is an advanced technique to restore the working dimensions of parts... 相似文献
Powder Metallurgy and Metal Ceramics - The phase composition, type II microstresses, and coherent scattering domains (CSDs) of multicomponent (medium- and high-entropy) bcc solid solutions with an... 相似文献
Powder Metallurgy and Metal Ceramics - Fuel cells are today among the most efficient and environmentally friendly devices for the production of electricity. They are developing rapidly and are... 相似文献
Recent research has shown that probabilistic and non-probabilistic dynamic programming techniques can be applied beneficially in the solution of optimal design and management problems in surveying. The survey design system is presented. A non-probabilistic dynamic programming solution of a second order, one dimensional optimal survey design problem is outlined and some applications of Bayesian dynamic programming to survey logistics and management problems are demonstrated. A useful 'technology transfer' technique is included to illustrate one method of introducing systems theory and operations research to survey engineering. 相似文献