首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   6篇
  国内免费   1篇
化学工业   57篇
金属工艺   2篇
机械仪表   2篇
建筑科学   2篇
无线电   3篇
一般工业技术   30篇
冶金工业   4篇
原子能技术   5篇
自动化技术   29篇
  2023年   1篇
  2022年   4篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   5篇
  2017年   7篇
  2016年   5篇
  2015年   3篇
  2014年   4篇
  2013年   8篇
  2012年   8篇
  2011年   9篇
  2010年   7篇
  2009年   2篇
  2008年   7篇
  2007年   6篇
  2006年   8篇
  2005年   5篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   4篇
  1999年   1篇
  1998年   4篇
  1996年   4篇
  1995年   5篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1980年   1篇
排序方式: 共有134条查询结果,搜索用时 15 毫秒
21.
Multimedia Tools and Applications - Watermarks have long been applied to ensure the authenticity of media contents. Computer software is an intellectual outcome in the digital domain. Therefore, it...  相似文献   
22.
Multimedia Tools and Applications - The diagnosis of dementia, particularly in the early stages is very much helpful with Positron emission tomography (PET) image processing. The most important...  相似文献   
23.
The present investigation studys the effects of different electrodes such as copper, nickel, and stainless steel under low-pressure plasma on physicochemical and adhesion characteristics of high-density polyethylene (HDPE). To estimate the extent of surface modification, the surface energies of the polymer surfaces exposed to low-pressure plasmas have been determined by measuring contact angles using two standard test liquids of known surface energies. It is observed that the surface energy and its polar component increase with increasing exposure time, attain a maximum, and then decrease. The increase in surface energy and its polar component is relatively more important when the polymer is exposed under a stainless-steel electrode followed by a nickel and then a copper electrode. The dispersion component of surface energy remains almost unaffected. The surfaces have also been studied by optical microscopy and electron spectroscopy for chemical analysis (ESCA). It is observed that when the HDPE is exposed under these electrodes, single crystals of shish kebab structure form, and the extent of formation of crystals is higher under a stainless-steel electrode followed by nickel and then copper electrodes. Exposure of the polymer under low-pressure plasma has essentially incorporated oxygen functionalities on the polymer surface as detected by ESCA. Furthermore the ESCA studies strongly emphasize that higher incorporation of oxygen functionalities are obtained when the polymer is exposed to low-pressure plasma under a stainless-steel electrode followed by nickel and then copper electrodes. These oxygen functionalities have been transformed into various polar functional groups, which have been attributed to increases in the polar component of surface energy as well as the total surface energy of the polymer. Therefore, the maximum increase in surface energy results in stronger adhesion of the polymer when the polymer is exposed under a stainless-steel electrode rather than nickel and copper electrodes.  相似文献   
24.
Ethylene-vinyl acetate (EVA) copolymer (12% vinyl acetate content) is subjected to electron beam irradiation using trimethylolpropane trimethacrylate (TMPTMA) as a radiation sensitizer. Mechanical and electrical studies of these irradiated samples show that the strength properties (tensile strength, elongation at break) are increased with radiation dosage up to an optimum radiation dose and sensitizer level above which the properties begin to deteriorate. Crosslinking of the polymer takes place on irradiation which is attributed to an increased gel content with increasing radiation dose. Compared to the original samples both dielectric constant and dielectric loss factor decrease for samples subjected to irradiation.  相似文献   
25.
The role of polyfunctional organic molecules in the synthesis of differently shaped metallic nanostructures and their assembly is investigated. These molecules could be used as spacer ligands and also for surface passivation of nanoparticles, especially with the objective of controlling their electronic and optical properties depending on their length scales. We investigate the role of several such molecules, such as 4-aminothiophenol, tridecylamine, Bismarck brown R and Y, mordant brown, fat brown, chrysoidin (basic orange), and 3-aminobenzoic acid in the synthesis and assembly of various nanoparticles of gold and silver. For example, the use of 4-ATP helps in the formation of rod shaped micelles in aqueous acetonitrile as confirmed by transmission electron microscopy (TEM) suggesting their role as soft templates. In addition, 4-ATP has also been used for the formation of heteroassembly of spherical nanoparticles of gold and silver at controlled pH. Significantly, triangular and hexagonal gold nanoplates are formed at room temperature by similar polyfunctional dye molecule, Bismarck brown R (BBR), while other analogous dye molecules give only arbitrary shaped gold nanoparticles. Further confirmation of their role in shape determination comes from linear amine molecules such as tridecylamine, which give only spherical nanoparticles both for silver and gold. In essence, our study confirms the role of various such organic molecules in shape controlled synthesis of nanoparticles. We also report optical and electrochemical properties of few of these nanostructures as a function of their shape.  相似文献   
26.
The electrical and mechanical properties of new conductive rubber composites based on ethylene–propylene–diene rubber, acrylonitrile butadiene rubber (NBR), and their 50/50 (weight ratio) blend filled with conductive black were investigated. The threshold concentrations for achieving high conductivity are explained on the basis of the viscosity of the rubber. The electrical conductivity increases with the increase in temperature whereas the activation energy of conduction decreases with an increase in filler loading and NBR concentration in the composites. The electrical hysteresis and electrical set are observed during the heating–cooling cycle, which is mainly due to some kind of irreversible change occurring in the conductive networks during heating. The mechanisms of conduction in these systems are discussed in the light of different theories. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 887–895, 1999  相似文献   
27.
Standard laboratory ageing methods of bitumen only take into account the effect of thermo-oxidation during the service life of a pavement but the effect of high energy cosmic radiation on site is not simulated in these procedures. The aim of the present work is to compare the laboratory simulated short term bitumen ageing (rolling thin film oven test) with ageing produced by short exposures of bitumen samples to Ultra Violet and gamma radiation. The influence of ageing agents on the thermal properties and rheological performance of the pristine and modified bitumen binders has been evaluated in this study. The thermal behavior of various aged bitumens is characterized by both isothermal as well as non-isothermal thermogravimetric analysis. The thermoanalytic investigations on bituminous samples are carried out to evaluate the thermal stabilities and activation energies of the binders and the life time prediction of the materials is made with the help of the kinetic information. It is found that modified bituminous binders are more resistant to heat and radiation. Different rheological tests are conducted by dynamic shear rheometer to examine the effect of ageing in terms of bitumen oxidation and polymer phase degradation which has a major consequence on high temperature rutting or low temperature cracking. Type of modifier is found to be of decisive importance. Creep and recovery tests show that the structure-time dependency of pristine aged bitumen is influenced much by stress and temperature than in the case of modified aged bitumens. The study has revealed that the elastomeric modifier protects the bituminous binder more than plastic modifier or nano filler. Finally, a fair correlation has been made between standard RTFO ageing and radiation aging.  相似文献   
28.
We present a framework, called air, for verifying safety properties of assembly language programs via software model checking. air extends the applicability of predicate abstraction and counterexample guided abstraction refinement to the automated verification of low-level software. By working at the assembly level, air allows verification of programs for which source code is unavailable—such as legacy and COTS software—and programs that use features—such as pointers, structures, and object-orientation—that are problematic for source-level software verification tools. In addition, air makes no assumptions about the underlying compiler technology. We have implemented a prototype of air and present encouraging results on several non-trivial examples.  相似文献   
29.
The ethylene methyl acrylate copolymer (EMA) and multiwalled carbon nanotube (MWNT) based composites were prepared by solution mixing as well as by melt processing of the films obtained after solution mixing. Field emission scanning electron microscopy, transmission electron microscopy, and XRD were used to characterize morphologies of various composites. MWNTs were found to be more dispersed in the composites prepared by melt process after solution process. There was no obvious agglomeration of MWNTs at lower % loading (up to 2.5%) in the polymer matrices especially the composites are prepared solution plus melt mixing and consequently better interaction between MWNTs and EMA matrix was anticipated. XRD and differential scanning calorimetry studied showed that the nanotubes affect the crystallization process and subsequently their role as a nucleating agent was established. These are reflected in the mechanical properties of the composites. Dynamic mechanical analysis showed that the storage modulus of the composites drop very sharply beyond 2.5 wt% of MWNT content with increasing % strain and it reflects the Payne effect (a substantial decrease in the storage modulus of a particle‐reinforced polymer with an increase in the amplitude of dynamic oscillations). The influence of concentration of filler was also realized by frequency sweep experiment. The incorporation of MWNTs in EMA offered a stabilizing effect since onset of degradation occurs at higher temperatures for composites. POLYM. COMPOS., 31:1168–1178, 2010. © 2009 Society of Plastics Engineers  相似文献   
30.
This article reports the results of studies on the effect of 1-octadecanol (abbreviated as C18) functionalization of carbon nanotubes (CNT) on electrical properties of natural rubber (NR) composites. Dispersion of CNT in NR matrix was studied by transmission electron microscopy (TEM) and electrical resistivity measurements. Fourier transform infra red spectrometry (FTIR) indicates characteristic peaks for ether and hydrocarbon in the case of C18 functionalized CNT. Dielectric constant increases with respect to the filler loading for both unmodified and functionalized CNTs, the effect being less pronounced in the case of functionalized CNT due to its better dispersion in the matrix. Stress–strain plots suggest that the mechanical integrity of the NR/CNT composites, measured in terms of tensile strength, increases on C18 functionalization of the nanofiller. TEM reveals that the functionalization causes improvement in dispersion of CNT in NR matrix, which is corroborated by the increase in electrical resistivity in the case of the functionalized CNT/NR composites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号