首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   7篇
  国内免费   1篇
化学工业   32篇
金属工艺   2篇
建筑科学   3篇
能源动力   4篇
轻工业   26篇
石油天然气   1篇
无线电   7篇
一般工业技术   9篇
冶金工业   1篇
原子能技术   1篇
自动化技术   8篇
  2023年   1篇
  2022年   11篇
  2021年   9篇
  2020年   6篇
  2019年   7篇
  2018年   5篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   7篇
  2012年   3篇
  2011年   7篇
  2010年   6篇
  2008年   7篇
  2007年   5篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2002年   1篇
  2001年   2篇
  1998年   1篇
  1990年   1篇
排序方式: 共有94条查询结果,搜索用时 0 毫秒
91.
92.
In this study we report the preparation and characterization of fine silver microparticles by simple chemical reduction of silver nitrate using two types of bases and poly(N-vinylpyrrolidone) as protective agent. The influence of silver nitrate concentration and the nature and concentration of bases, on the properties of the silver microparticles was investigated. The structural characteristics of microparticles were determined using x-ray diffraction, scanning electron microscopy, and particle distribution analysis. It was noticed that the structure and the shape of silver microparticles depend on the base nature and the concentration of silver nitrate added to the base. It was also noted the absence of agglomerates in the powder prepared with PVP. This polymer not only serves as both coordinating agent and stabilizing one, but also plays an important role in controlling the size and shape of metal particles.  相似文献   
93.
The antimicrobial potential of switchgrass extractives (SE) was evaluated on cut lettuce leaves and romaine lettuce in planta, using rifampicin-resistant Escherichia coli O157:H7 and Salmonella Typhimurium strain LT2 as model pathogens. Cut lettuce leaves were swabbed with E. coli O157:H7 or S. Typhimurium followed by surface treatment with 0.8% SE, 0.6% sodium hypochlorite, or water for 1 to 45 min. For in planta studies, SE was swabbed on demarcated leaf surfaces either prior to or after inoculation of greenhouse-grown lettuce with E. coli O157:H7 or S. Typhimurium; the leaf samples were collected after 0, 24, and 48 h of treatment. Bacteria from inoculated leaves were enumerated on tryptic soy agar plates (and also on MacConkey's and XLT4 agar plates), and the recovered counts were statistically analyzed. Cut lettuce leaves showed E. coli O157:H7 reduction between 3.25 and 6.17 log CFU/leaf, whereas S. Typhimurium reductions were between 2.94 log CFU/leaf and 5.47 log CFU/leaf depending on the SE treatment durations, from initial levels of ∼7 log CFU/leaf. SE treatment of lettuce in planta, before bacterial inoculation, reduced E. coli O157:H7 and S. Typhimurium populations by 1.88 and 2.49 log CFU after 24 h and 3 h, respectively. However, SE treatment after bacterial inoculation of lettuce plants decreased E. coli O157:H7 populations by 3.04 log CFU (after 0 h) with negligible reduction of S. Typhimurium populations. Our findings demonstrate the potential of SE as a plant-based method for decontaminating E. coli O157:H7 on lettuce during pre- and postharvest stages in hurdle approaches.  相似文献   
94.
Autonomous driving has the ability to reshape mobility and transportation by reducing road accidents, traffic jams, and air pollution. This can yield energy efficiency, convenience, and more productivity as significant driving time will be gained and used in other activities instead. Autonomous vehicles are complex systems consisting of several modules that perform perception, decision-making, planning, and control. Control is essential for achieving automatic driving; it is basically divided into longitudinal control that handles speed tracking and lateral control which ensures accurate steering. The latter is primordial in path tracking applications and recent research has witnessed a huge leap in this field. The aim of this paper is to provide a technical survey of the latest research on the lateral control of autonomous vehicles as well as to highlight technical challenges and limits for further developments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号