首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   10篇
电工技术   1篇
化学工业   68篇
金属工艺   4篇
机械仪表   6篇
建筑科学   10篇
矿业工程   3篇
能源动力   3篇
轻工业   26篇
水利工程   2篇
石油天然气   2篇
无线电   15篇
一般工业技术   43篇
冶金工业   41篇
自动化技术   65篇
  2023年   7篇
  2022年   22篇
  2021年   22篇
  2020年   6篇
  2019年   9篇
  2018年   6篇
  2017年   10篇
  2016年   8篇
  2015年   7篇
  2014年   12篇
  2013年   16篇
  2012年   13篇
  2011年   20篇
  2010年   7篇
  2009年   15篇
  2008年   17篇
  2007年   8篇
  2006年   8篇
  2005年   14篇
  2004年   11篇
  2003年   3篇
  2002年   7篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1998年   7篇
  1997年   5篇
  1995年   3篇
  1994年   5篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1978年   1篇
排序方式: 共有289条查询结果,搜索用时 15 毫秒
161.
Vitiligo is a chronic autoimmune dermatosis of which the pathogenesis remains scarcely known. A wide variety of clinical studies have been proposed to investigate the immune mediators which have shown the most recurrency. However, such trials have produced controversial results. The aim of this review is to summarize the main factors involved in the pathogenesis of vitiligo, the latest findings regarding the cytokines involved and to evaluate the treatments based on the use of biological drugs in order to stop disease progression and achieve repigmentation. According to the results, the most recurrent studies dealt with inhibitors of IFN-gamma and TNF-alpha. It is possible that, given the great deal of cytokines involved in the lesion formation process of vitiligo, other biologics could be developed in the future to be used as adjuvants and/or to entirely replace the treatments that have proven to be unsatisfactory so far.  相似文献   
162.
163.
Pyridine Nucleotide-Disulfide Oxidoreductase Domain 2 (PYROXD2; previously called YueF) is a mitochondrial inner membrane/matrix-residing protein and is reported to regulate mitochondrial function. The clinical importance of PYROXD2 has been unclear, and little is known of the protein’s precise biological function. In the present paper, we report biallelic variants in PYROXD2 identified by genome sequencing in a patient with suspected mitochondrial disease. The child presented with acute neurological deterioration, unresponsive episodes, and extreme metabolic acidosis, and received rapid genomic testing. He died shortly after. Magnetic resonance imaging (MRI) brain imaging showed changes resembling Leigh syndrome, one of the more common childhood mitochondrial neurological diseases. Functional studies in patient fibroblasts showed a heightened sensitivity to mitochondrial metabolic stress and increased mitochondrial superoxide levels. Quantitative proteomic analysis demonstrated decreased levels of subunits of the mitochondrial respiratory chain complex I, and both the small and large subunits of the mitochondrial ribosome, suggesting a mitoribosomal defect. Our findings support the critical role of PYROXD2 in human cells, and suggest that the biallelic PYROXD2 variants are associated with mitochondrial dysfunction, and can plausibly explain the child’s clinical presentation.  相似文献   
164.
The extracellular matrix (ECM) and ECM-regulatory proteins mediate structural and cell-cell interactions that are crucial for embryonic cardiac development and postnatal homeostasis, as well as organ remodeling and repair in response to injury. These proteins possess a broad functionality that is regulated by multiple structural domains and dependent on their ability to interact with extracellular substrates and/or cell surface receptors. Several different cell types (cardiomyocytes, fibroblasts, endothelial and inflammatory cells) within the myocardium elaborate ECM proteins, and their role in cardiovascular (patho)physiology has been increasingly recognized. This has stimulated robust research dissecting the ECM protein function in human health and disease and replicating the genetic proof-of-principle. This review summarizes recent developments regarding the contribution of ECM to cardiovascular disease. The clear importance of this heterogeneous group of proteins in attenuating maladaptive repair responses provides an impetus for further investigation into these proteins as potential pharmacological targets in cardiac diseases and beyond.  相似文献   
165.
166.
Prenatal stress (PNS) impairs the circadian rhythm of the sleep/wake cycle. The melatonin (MT) analogue Piromelatine (Pir) was designed for the treatment of insomnia. The present study aimed to explore effects of Pir on circadian rhythmicity, motor activity, and sleep structure in male and female rats with a history of prenatal stress (PNS). In addition, we elucidated the role of MT receptors and brain-derived neurotrophic factor (BDNF) to ascertain the underlying mechanism of the drug. Pregnant rats were exposed to different stressors from day seven until birth. Piromelatine (20 mg/kg/day/14 days) was administered to young adult offspring. Home-cage locomotion, electroencephalographic (EEG) and electromyographic (EMG) recordings were conducted for 24 h. Offspring treated with vehicle showed sex-and phase-dependent disturbed circadian rhythm of motor activity and sleep/wake cycle accompanied by elevated rapid eye movement (REM) pattern and theta power and diminished non-rapid eye movement (NREM) sleep and delta power. While Pir corrected the PNS-induced impaired sleep patterns, the MT receptor antagonist luzindol suppressed its effects in male and female offspring. In addition, Pir increased the BDNF expression in the hippocampus in male and female offspring with PNS. Our findings suggest that the beneficial effect of Pir on PNS-induced impairment of sleep/wake cycle circadian rhythm and sleep structure is exerted via activation of MT receptors and enhanced BDNF expression in the hippocampus in male and female offspring.  相似文献   
167.
Intrauterine growth restriction (IUGR), predominantly caused by placental insufficiency, affects partitioning of nutrients to the fetus. The system A sodium-coupled transporters (SNAT or SLC38), of types A1, A2, and A4, control non-essential amino acid uptake and supply. Here, we aimed to investigate the expression of these transporters across different placental disease cohorts and cells. To determine disease impact, transporter expressions at the gene (qPCR) and protein (western blots) level were assessed in gestationally matched placental tissues. Early (<34 weeks), and late (34–36 weeks) onset IUGR cases with/out preeclampsia were compared to preterm controls. We also investigated level of transporter expression in primary trophoblasts under glucose deprivation (n = 6) and hypoxia conditions (n = 7). SLC38A4 protein was significantly downregulated in early preterm pregnancies complicated with IUGR with/out preeclampsia. There were no differences in late preterm IUGR cohorts. Furthermore, we demonstrate for the first time in primary trophoblast cells, that gene expression of the transporters was sensitive to and induced by glucose starvation. SLC38A4 mRNA expression was also significantly upregulated in response to hypoxia. Thus, SLC38A4 expression was persistently low in early preterm IUGR pregnancies, regardless of disease aetiology. This suggests that gestational age at delivery, and consequently IUGR severity, may influence loss of its expression.  相似文献   
168.
169.
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号