Ingress nodes in optical burst switching (OBS) networks are responsible for assembling burst from incoming packets and forwarding these bursts into the OBS network core. Changes in the statistical characteristics of a traffic stream at an ingress switch can affect the capacity of the network to provide quality of service. Therefore, the statistical characteristics of the output flow of an ingress node must be known for appropriate network dimensioning. This paper evaluates the impact of burst assembly mechanisms on the scaling properties of multifractal traffic flows. Results show that the factor most relevant in determining the nature of the output traffic flow is the relationship between the cut-off time scale of the input traffic and the time scale of assembly threshold. Moreover, a procedure for the detection of the cut-off scale of incoming traffic is introduced. 相似文献
Power electronics building blocks (PEBBs) are envisioned as integrated power modules consisting of power semiconductor devices, power integrated circuits, sensors, and protection circuits for a wide range of power electronics applications, such as inverters for motor drives and converters for power processing equipment. At the Center for Power Electronics Systems, we developed a topology for a basic building block-a two-switch two-diode half-bridge converter in totem-pole configuration with built-in gate-driver and protection circuitry, fiber-optic receiver/transmitter interface, and soft-switching capability. Based on the topology, a series of prototype modules, with 600 V, 3.3 kW rating, were fabricated using an innovative packaging technique developed for the program-metal posts interconnected parallel plate structure (MPIPPS). This new packaging technique uses direct attachment of bulk copper, not wire-bonding of fine aluminum wires, for interconnecting power devices. Electrical performance data of the packaged devices show that an air-cooled 15 kW inverter, operating from 400 V dc bus with 20 kHz switching frequency can be constructed by integrating three prototype modules, which is almost double what could be achieved with commercially packaged devices of the same rating 相似文献
A rectangular waveguide resonator operating in the H105 mode at 3.2 GHz is used in determining the change in resonant frequency, ΔF, and the Q factor of the cavity, ΔT , when measured with and without single corn kernels of various shapes and dimensions. By measuring those variables for a kernel oriented in two positions differing by a 90° rotation with respect to the maximum E-field vector, the average values of ΔF and ΔT are found to be independent of shape. The ratio ΔF/ΔT is independent of size and is a function of the material properties (ε'-1)/ε". This function is shown to be related to the material density, moisture content, or other characteristics when all other properties except the one selected remain unchanged 相似文献
Directed nanoparticle self‐organization and two‐photon polymerization are combined to enable three‐dimensional soft‐magnetic microactuators with complex shapes and shape‐independent magnetic properties. Based on the proposed approach, single and double twist‐type swimming microrobots with programmed magnetic anisotropy are demonstrated, and their swimming properties in DI‐water are characterized. The fabricated devices are actuated using weak rotating magnetic fields and are capable of performing wobble‐free corkscrew propulsion. Single twist‐type actuators possess an increase in surface area in excess of 150% over helical actuators with similar feature size without compromising the forward velocity of over one body length per second. A generic and facile combination of glycine grafting and subsequent protein immobilization exploits the actuator's increased surface area, providing for a swimming microrobotic platform with enhanced load capacity desirable for future biomedical applications. Successful surface modification is confirmed by FITC fluorescence. 相似文献
Recently distributed real-time database systems are intended to manage large volumes of dispersed data. To develop distributed real-time data processing, a reality and stay competitive well defined protocols and algorithms must be required to access and manipulate the data. An admission control policy is a major task to access real-time data which has become a challenging task due to random arrival of user requests and transaction timing constraints. This paper proposes an optimal admission control policy based on deep reinforcement algorithm and memetic algorithm which can efficiently handle the load balancing problem without affecting the Quality of Service (QoS) parameters. A Markov decision process (MDP) is formulated for admission control problem, which provides an optimized solution for dynamic resource sharing. The possible solutions for MDP problem are obtained by using reinforcement learning and linear programming with an average reward. The deep reinforcement learning algorithm reformulates the arrived requests from different users and admits only the needed request, which improves the number of sessions of the system. Then we frame the load balancing problem as a dynamic and stochastic assignment problem and obtain optimal control policies using memetic algorithm. Therefore proposed admission control problem is changed to memetic logic in such a way that session corresponds to individual elements of the initial chromosome. The performance of proposed optimal admission control policy is compared with other approaches through simulation and it depicts that the proposed system outperforms the other techniques in terms of throughput, execution time and miss ratio which leads to better QoS.
Polyethylene terephthalate (PET) is the most widely used polymer in the world. For the first time, the laser-driven integration of aluminum nanoparticles (Al NPs) into PET to realize a laser-induced graphene/Al NPs/polymer composite, which demonstrates excellent toughness and high electrical conductivity with the formation of aluminum carbide into the polymer is shown. The conductive structures show an impressive mechanical resistance against >10000 bending cycles, projectile impact, hammering, abrasion, and structural and chemical stability when in contact with different solvents (ethanol, water, and aqueous electrolytes). Devices including thermal heaters, carbon electrodes for energy storage, electrochemical and bending sensors show this technology's practical application for ultra-robust polymer electronics. This laser-based technology can be extended to integrating other nanomaterials and create hybrid graphene-based structures with excellent properties in a wide range of flexible electronics’ applications. 相似文献
Numerically stable electric field integral equations (EFIE) are presented for electromagnetic scattering problems that may include both electrically small geometrically complex and electrically large regions. A reduced integrand is achieved by implementing quasi-static assumptions in the electrically small regions, full-wave methods in the electrically large regions, and applying appropriate coupling relations between the regions. Use of the method provides computational efficiency as well as insight into the conditions under which the electromagnetic fields within electrically small regions of the problem can be assumed to be primarily capacitive or inductive in nature. The theoretical development of the method is highlighted in this communication and then applied to examples of electrically small, inductively-loaded, and capacitively-loaded monopole antennas. The accuracy of the results is verified with two independent methods. 相似文献