首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3673篇
  免费   183篇
  国内免费   4篇
电工技术   24篇
综合类   2篇
化学工业   720篇
金属工艺   128篇
机械仪表   79篇
建筑科学   195篇
矿业工程   8篇
能源动力   116篇
轻工业   184篇
水利工程   45篇
石油天然气   29篇
无线电   274篇
一般工业技术   773篇
冶金工业   739篇
原子能技术   16篇
自动化技术   528篇
  2023年   37篇
  2022年   44篇
  2021年   105篇
  2020年   77篇
  2019年   91篇
  2018年   95篇
  2017年   89篇
  2016年   95篇
  2015年   84篇
  2014年   125篇
  2013年   232篇
  2012年   177篇
  2011年   253篇
  2010年   166篇
  2009年   160篇
  2008年   178篇
  2007年   163篇
  2006年   138篇
  2005年   103篇
  2004年   87篇
  2003年   94篇
  2002年   69篇
  2001年   52篇
  2000年   55篇
  1999年   43篇
  1998年   86篇
  1997年   72篇
  1996年   64篇
  1995年   40篇
  1994年   51篇
  1993年   40篇
  1992年   33篇
  1991年   29篇
  1990年   39篇
  1989年   45篇
  1988年   35篇
  1987年   52篇
  1986年   29篇
  1985年   35篇
  1984年   33篇
  1983年   32篇
  1982年   32篇
  1981年   21篇
  1980年   22篇
  1979年   28篇
  1978年   30篇
  1977年   26篇
  1976年   25篇
  1975年   23篇
  1973年   18篇
排序方式: 共有3860条查询结果,搜索用时 46 毫秒
91.
Eddy covariance (EC) measurements have greatly advanced our knowledge of carbon exchange in terrestrial ecosystems. However, appropriate techniques are required to upscale these spatially discrete findings globally. Satellite remote sensing provides unique opportunities in this respect, but remote sensing of the photosynthetic light-use efficiency (ε), one of the key components of Gross Primary Production, is challenging. Some progress has been made in recent years using the photochemical reflectance index, a narrow waveband index centered at 531 and 570 nm. The high sensitivity of this index to various extraneous effects such as canopy structure, and the view observer geometry has so far prevented its use at landscape and global scales. One critical aspect of upscaling PRI is the development of generic algorithms to account for structural differences in vegetation. Building on previous work, this study compares the differences in the PRI: ? relationship between a coastal Douglas-fir forest located on Vancouver Island, British Columbia, and a mature Aspen stand located in central Saskatchewan, Canada. Using continuous, tower-based observations acquired from an automated multi-angular spectro-radiometer (AMSPEC II) installed at each site, we demonstrate that PRI can be used to measure ? throughout the vegetation season at the DF-49 stand (r2 = 0.91, p < 0.00) as well as the deciduous site (r2 = 0.88, p < 0.00). It is further shown that this PRI signal can be also observed from space at both sites using daily observations from the Moderate Resolution Imaging Spectro-radiometer (MODIS) and a multi-angular implementation of atmospheric correction (MAIAC) (r2 = 0.54 DF-49; r2 = 0.63 SOA; p < 0.00). By implementing a simple hillshade model derived from airborne light detection and ranging (LiDAR) to approximate canopy shadow fractions (αs), it is further demonstrated that the differences observed in the relationship between PRI and ε at DF-49 and SOA can be attributed largely to differences in αs. The findings of this study suggest that algorithms used to separate physiological from extraneous effects in PRI reflectance may be more broadly applicable and portable across these two climatically and structurally different biome types, when the differences in canopy structure are known.  相似文献   
92.
For domains in which fitness is subjective or difficult to express formally, interactive evolutionary computation (IEC) is a natural choice. It is possible that a collaborative process combining feedback from multiple users can improve the quality and quantity of generated artifacts. Picbreeder, a large-scale online experiment in collaborative interactive evolution (CIE), explores this potential. Picbreeder is an online community in which users can evolve and share images, and most importantly, continue evolving others' images. Through this process of branching from other images, and through continually increasing image complexity made possible by the underlying neuroevolution of augmenting topologies (NEAT) algorithm, evolved images proliferate unlike in any other current IEC system. This paper discusses not only the strengths of the Picbreeder approach, but its challenges and shortcomings as well, in the hope that lessons learned will inform the design of future CIE systems.  相似文献   
93.
This paper addresses the problem of autonomous navigation of a micro air vehicle (MAV) in GPS‐denied environments. We present experimental validation and analysis for our system that enables a quadrotor helicopter, equipped with a laser range finder sensor, to autonomously explore and map unstructured and unknown environments. The key challenge for enabling GPS‐denied flight of a MAV is that the system must be able to estimate its position and velocity by sensing unknown environmental structure with sufficient accuracy and low enough latency to stably control the vehicle. Our solution overcomes this challenge in the face of MAV payload limitations imposed on sensing, computational, and communication resources. We first analyze the requirements to achieve fully autonomous quadrotor helicopter flight in GPS‐denied areas, highlighting the differences between ground and air robots that make it difficult to use algorithms developed for ground robots. We report on experiments that validate our solutions to key challenges, namely a multilevel sensing and control hierarchy that incorporates a high‐speed laser scan‐matching algorithm, data fusion filter, high‐level simultaneous localization and mapping, and a goal‐directed exploration module. These experiments illustrate the quadrotor helicopter's ability to accurately and autonomously navigate in a number of large‐scale unknown environments, both indoors and in the urban canyon. The system was further validated in the field by our winning entry in the 2009 International Aerial Robotics Competition, which required the quadrotor to autonomously enter a hazardous unknown environment through a window, explore the indoor structure without GPS, and search for a visual target. © 2011 Wiley Periodicals, Inc.  相似文献   
94.
95.
A combination of soft lithography and lift-off processing is presented for the fabrication of sulfonated polyaniline (SPAN) microstructures. A soft lithography based micromolding process was used to pattern sacrificial layers using a thermoplastic polymer. SPAN was then polymerized in situ to coat the patterned substrate. The sacrificial layer was removed by lift-off in an organic solvent, leaving the patterned SPAN on the substrate. This process was performed on several rigid and flexible substrates including glass, silicon, and polyimide. The film thickness and roughness were measured as a function of reaction time using atomic force microscopy. Patterns were also imaged using scanning electron microscopy. This process provides a cost effective and versatile method of patterning SPAN and has potential applications in a number of conducting polymer devices.  相似文献   
96.
ContextSome recent static techniques for automatic bug localization have been built around modern information retrieval (IR) models such as latent semantic indexing (LSI). Latent Dirichlet allocation (LDA) is a generative statistical model that has significant advantages, in modularity and extensibility, over both LSI and probabilistic LSI (pLSI). Moreover, LDA has been shown effective in topic model based information retrieval. In this paper, we present a static LDA-based technique for automatic bug localization and evaluate its effectiveness.ObjectiveWe evaluate the accuracy and scalability of the LDA-based technique and investigate whether it is suitable for use with open-source software systems of varying size, including those developed using agile methods.MethodWe present five case studies designed to determine the accuracy and scalability of the LDA-based technique, as well as its relationships to software system size and to source code stability. The studies examine over 300 bugs across more than 25 iterations of three software systems.ResultsThe results of the studies show that the LDA-based technique maintains sufficient accuracy across all bugs in a single iteration of a software system and is scalable to a large number of bugs across multiple revisions of two software systems. The results of the studies also indicate that the accuracy of the LDA-based technique is not affected by the size of the subject software system or by the stability of its source code base.ConclusionWe conclude that an effective static technique for automatic bug localization can be built around LDA. We also conclude that there is no significant relationship between the accuracy of the LDA-based technique and the size of the subject software system or the stability of its source code base. Thus, the LDA-based technique is widely applicable.  相似文献   
97.
In silico models that predict the rate of human renal clearance for a diverse set of drugs, that exhibit both active secretion and net re-absorption, have been produced using three statistical approaches. Partial Least Squares (PLS) and Random Forests (RF) have been used to produce continuous models whereas Classification And Regression Trees (CART) has only been used for a classification model. The best models generated from either PLS or RF produce significant models that can predict acids/zwitterions, bases and neutrals with approximate average fold errors of 3, 3 and 4, respectively, for an independent test set that covers oral drug-like property space. These models contain additional information on top of any influence arising from plasma protein binding on the rate of renal clearance. Classification And Regression Trees (CART) has been used to generate a classification tree leading to a simple set of Renal Clearance Rules (RCR) that can be applied to man. The rules are influenced by lipophilicity and ion class and can correctly predict 60% of an independent test set. These percentages increase to 71% and 79% for drugs with renal clearances of < 0.1 ml/min/kg and > 1 ml/min/kg, respectively. As far as the authors are aware these are the first set of models to appear in the literature that predict the rate of human renal clearance and can be used to manipulate molecular properties leading to new drugs that are less likely to fail due to renal clearance.  相似文献   
98.
A poly(dimethylsiloxane) (PDMS)-based functional microfluidic device containing a charged matrix of PDMS pillar arrays grafted with hyperbranched polyglycerols (HPGs) was developed. Samples of PDMS were modified with allylamine plasma to form amine groups on the surface prior to the covalent grafting of succinimdyl ester-functionalized HPGs. The anionic functionality of the PDMS channel matrices was developed by altering the number of carboxyl groups present on the HPGs. The grafting of HPGs onto PDMS plates was investigated via contact angle measurement and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), while the grafting of the inside channel was investigated by electroosmotic flow (EOF) measurements. The charge density on grafted HPG was optimized to minimize the nonspecific protein adsorption and increase the selective capture of positively charged proteins. A proof-of-concept device was fabricated on PDMS and demonstrated that the device selectively captures positively charged protein (avidin) from a mixture of bovine serum albumin (BSA)-avidin at pH 7.4 in phosphate buffered saline (PBS). In order to increase the capture efficiency of the proteins in this PDMS-based device, pillar arrays have been fabricated within the channel. As a demonstration, the new device separated two proteins with an avidin capture efficiency of 100 ± 2.95% per 3 min from a 0.02 mg/ml protein solution (avidin:BSA wt ratio: 1:1). This new microfluidic-based device shows a great deal of promise as a tool for protein capture and analysis.  相似文献   
99.
Tracking soft tissues in medical images using non-linear image registration algorithms requires methods that are fast and provide spatial transformations consistent with the biological characteristics of the tissues. LogDemons algorithm is a fast non-linear registration method that computes diffeomorphic transformations parameterised by stationary velocity fields. Although computationally efficient, its use for tissue tracking has been limited because of its ad-hoc Gaussian regularisation, which hampers the implementation of more biologically motivated regularisations. In this work, we improve the logDemons by integrating elasticity and incompressibility for soft-tissue tracking. To that end, a mathematical justification of demons Gaussian regularisation is proposed. Building on this result, we replace the Gaussian smoothing by an efficient elastic-like regulariser based on isotropic differential quadratic forms of vector fields. The registration energy functional is finally minimised under the divergence-free constraint to get incompressible deformations. As the elastic regulariser and the constraint are linear, the method remains computationally tractable and easy to implement. Tests on synthetic incompressible deformations showed that our approach outperforms the original logDemons in terms of elastic incompressible deformation recovery without reducing the image matching accuracy. As an application, we applied the proposed algorithm to estimate 3D myocardium strain on clinical cine MRI of two adult patients. Results showed that incompressibility constraint improves the cardiac motion recovery when compared to the ground truth provided by 3D tagged MRI.  相似文献   
100.
Estimation of photosynthetic light use efficiency (ε) from satellite observations is an important component of climate change research. The photochemical reflectance index, a narrow waveband index based on the reflectance at 531 and 570 nm, allows sampling of the photosynthetic activity of leaves; upscaling of these measurements to landscape and global scales, however, remains challenging. Only a few studies have used spaceborne observations of PRI so far, and research has largely focused on the MODIS sensor. Its daily global coverage and the capacity to detect a narrow reflectance band at 531 nm make it the best available choice for sensing ε from space. Previous results however, have identified a number of key issues with MODIS-based observations of PRI. First, the differences between the footprint of eddy covariance (EC) measurements and the MODIS footprint, which is determined by the sensor's observation geometry make a direct comparison between both data sources challenging and second, the PRI reflectance bands are affected by atmospheric scattering effects confounding the existing physiological signal. In this study we introduce a new approach for upscaling EC based ε measurements to MODIS. First, EC-measured ε values were “translated” into a tower-level optical PRI signal using AMSPEC, an automated multi-angular, tower-based spectroradiometer instrument. AMSPEC enabled us to adjust tower-measured PRI values to the individual viewing geometry of each MODIS overpass. Second, MODIS data were atmospherically corrected using a Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, which uses a time series approach and an image-based rather than pixel-based processing for simultaneous retrievals of atmospheric aerosol and surface bidirectional reflectance (BRDF). Using this approach, we found a strong relationship between tower-based and spaceborne reflectance measurements (r2 = 0.74, p < 0.01) throughout the vegetation period of 2006. Swath (non-gridded) observations yielded stronger correlations than gridded data (r2 = 0.58, p < 0.01) both of which included forward and backscatter observations. Spaceborne PRI values were strongly related to canopy shadow fractions and varied with different levels of ε. We conclude that MAIAC-corrected MODIS observations were able to track the site-level physiological changes from space throughout the observation period.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号