首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1646篇
  免费   101篇
  国内免费   3篇
电工技术   20篇
化学工业   412篇
金属工艺   7篇
机械仪表   33篇
建筑科学   69篇
矿业工程   1篇
能源动力   48篇
轻工业   172篇
水利工程   30篇
石油天然气   1篇
无线电   156篇
一般工业技术   332篇
冶金工业   140篇
原子能技术   15篇
自动化技术   314篇
  2024年   1篇
  2023年   17篇
  2022年   100篇
  2021年   104篇
  2020年   65篇
  2019年   55篇
  2018年   63篇
  2017年   46篇
  2016年   73篇
  2015年   52篇
  2014年   70篇
  2013年   100篇
  2012年   96篇
  2011年   127篇
  2010年   82篇
  2009年   85篇
  2008年   91篇
  2007年   82篇
  2006年   62篇
  2005年   58篇
  2004年   46篇
  2003年   31篇
  2002年   28篇
  2001年   22篇
  2000年   13篇
  1999年   18篇
  1998年   32篇
  1997年   29篇
  1996年   15篇
  1995年   5篇
  1994年   8篇
  1993年   9篇
  1992年   8篇
  1991年   1篇
  1990年   2篇
  1989年   6篇
  1988年   6篇
  1987年   2篇
  1986年   6篇
  1985年   9篇
  1984年   5篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1977年   3篇
  1976年   2篇
  1970年   1篇
排序方式: 共有1750条查询结果,搜索用时 13 毫秒
61.
Metabolic syndrome (MetS) is a highly prevalent condition among adult males, affecting up to 41% of men in Europe. It is characterized by the association of obesity, hypertension, and atherogenic dyslipidemia, which lead to premature morbidity and mortality due to cardiovascular disease (CVD). Male infertility is another common condition which accounts for about 50% of cases of couple infertility worldwide. Interestingly, male infertility and MetS shares several risk factors (e.g., smoking, ageing, physical inactivity, and excessive alcohol consumption), leading to reactive oxygen species (ROS) production and increased oxidative stress (OS), and resulting in endothelial dysfunction and altered semen quality. Thus, the present narrative review aims to discuss the pathophysiological mechanisms which link male infertility and MetS and to investigate the latest available evidence on the reproductive consequences of MetS.  相似文献   
62.
The identification of advanced fibrosis by applying noninvasive tests is still a key component of the diagnostic algorithm of NAFLD. The aim of this study is to assess the concordance between the FIB-4 and liver stiffness measurement (LSM) in patients referred to two liver centers for the ultrasound-based diagnosis of NAFLD. Fibrosis 4 Index for Liver Fibrosis (FIB-4) and LSM were assessed in 1338 patients. A total of 428 (32%) had an LSM ≥ 8 kPa, whereas 699 (52%) and 113 (9%) patients had an FIB-4 < 1.3 and >3.25, respectively. Among 699 patients with an FIB-4 < 1.3, 118 (17%) had an LSM ≥ 8 kPa (false-negative FIB-4). This proportion was higher in patients ≥60 years, with diabetes mellitus (DM), arterial hypertension or a body mass index (BMI) ≥ 27 kg/m2. In multiple adjusted models, age ≥ 60 years (odds ratio (OR) = 1.96, 95% confidence interval (CI) 1.19–3.23)), DM (OR = 2.59, 95% CI 1.63–4.13), body mass index (BMI) ≥ 27 kg/m2 (OR = 2.17, 95% CI 1.33–3.56) and gamma-glutamyltransferase ≥ 25 UI/L (OR = 2.68, 95% CI 1.49–4.84) were associated with false-negative FIB-4. The proportion of false-negative FIB-4 was 6% in patients with none or one of these risk factors and increased to 16, 31 and 46% among those with two, three and four concomitant risk factors, respectively. FIB-4 is suboptimal to identify patients to refer to liver centers, because about one-fifth may be false negative at FIB-4, having instead an LSM ≥ 8 KPa.  相似文献   
63.
The development of atherosclerosis is a multi-step process, at least in part controlled by the vascular endothelium function. Observations in humans and experimental models of atherosclerosis have identified monocyte recruitment as an early event in atherogenesis. Chronic inflammation is associated with ageing and its related diseases (e.g., atherosclerosis and chronic obstructive pulmonary disease). Recently it has been discovered that Sirtuins (NAD+-dependent deacetylases) represent a pivotal regulator of longevity and health. They appear to have a prominent role in vascular biology and regulate aspects of age-dependent atherosclerosis. Many studies demonstrate that SIRT1 exhibits anti-inflammatory properties in vitro (e.g., fatty acid-induced inflammation), in vivo (e.g., atherosclerosis, sustainment of normal immune function in knock-out mice) and in clinical studies (e.g., patients with chronic obstructive pulmonary disease). Because of a significant reduction of SIRT1 in rodent lungs exposed to cigarette smoke and in lungs of patients with chronic obstructive pulmonary disease (COPD), activation of SIRT1 may be a potential target for chronic obstructive pulmonary disease therapy. We review the inflammatory mechanisms involved in COPD-CVD coexistence and the potential role of SIRT1 in the regulation of these systems.  相似文献   
64.
One-quarter of patients with acute decompensated heart failure (ADHF) experience acute kidney injury (AKI)—an abrupt reduction or loss of kidney function associated with increased long-term mortality. There is a critical need to identify early and real-time markers of AKI in ADHF; however, to date, no protein biomarkers have exhibited sufficient diagnostic or prognostic performance for widespread clinical uptake. We aimed to identify novel protein biomarkers of AKI associated with ADHF by quantifying changes in protein abundance in the kidneys that occur during ADHF development and recovery in an ovine model. Relative quantitative protein profiling was performed using sequential window acquisition of all theoretical fragment ion spectra–mass spectrometry (SWATH–MS) in kidney cortices from control sheep (n = 5), sheep with established rapid-pacing-induced ADHF (n = 8), and sheep after ~4 weeks recovery from ADHF (n = 7). Of the 790 proteins quantified, we identified 17 candidate kidney injury markers in ADHF, 1 potential kidney marker of ADHF recovery, and 2 potential markers of long-term renal impairment (differential abundance between groups of 1.2–2.6-fold, adjusted p < 0.05). Among these 20 candidate protein markers of kidney injury were 6 candidates supported by existing evidence and 14 novel candidates not previously implicated in AKI. Proteins of differential abundance were enriched in pro-inflammatory signalling pathways: glycoprotein VI (activated during ADHF development; adjusted p < 0.01) and acute phase response (repressed during recovery from ADHF; adjusted p < 0.01). New biomarkers for the early detection of AKI in ADHF may help us to evaluate effective treatment strategies to prevent mortality and improve outcomes for patients.  相似文献   
65.
P‐Glycoprotein (P‐gp) is an efflux transporter widely expressed at the human blood–brain barrier. It is involved in xenobiotics efflux and in onset and progression of neurodegenerative disorders. For these reasons, there is great interest in the assessment of P‐gp expression and function by noninvasive techniques such as positron emission tomography (PET). Three radiolabeled aryloxazole derivatives: 2‐[2‐(2‐methyl‐(11C)‐5‐methoxyphenyl)oxazol‐4‐ylmethyl]‐6,7‐dimethoxy‐1,2,3,4‐tetrahydroisoquinoline ([11C]‐ 5 ); 2‐[2‐(2‐fluoromethyl‐(18F)‐5‐methoxyphenyl)oxazol‐4‐ylmethyl]‐6,7‐dimethoxy‐1,2,3,4‐tetra‐hydroisoquinoline ([18F]‐ 6 ); and 2‐[2‐(2‐fluoroethyl‐(18F)‐5‐methoxyphenyl)oxazol‐4‐ylmethyl]‐6,7‐dimethoxy‐1,2,3,4‐tetrahydroisoquinoline ([18F]‐ 7 ), were tested in several in vitro biological assays to assess the effect of the aryl substituent in terms of potency and mechanism of action toward P‐gp. Methyl derivative [11C]‐ 5 is a potent P‐gp substrate, whereas the corresponding fluoroethyl derivative [18F]‐ 7 is a P‐gp inhibitor. Fluoromethyl compound [18F]‐ 6 is classified as a non‐transported P‐gp substrate, because its efflux increases after cyclosporine A modulation. These studies revealed a promising substrate and inhibitor, [11C]‐ 5 and [18F]‐ 7 , respectively, for in vivo imaging of P‐gp by using PET.  相似文献   
66.
Bioactive glass is considered an ideal material for haemostasis as it releases Ca2+ ions upon hydration, which is required to support thrombosis. In this study the effects of the presence of nanoscaled bioactive glass (n‐BG) in poly(3‐hydroxybutyrate) (P(3HB)) microsphere films on the structural properties, thermal properties and biocompatibility of the films were studied. The n‐BG with a high surface area was also tested for its in vitro haemostatic efficacy and was found to be able to successfully reduce clot detection time. In an effort to study the effect of the roughness induced by the formation of hydroxyapatite on cellular functions such as cell adhesion, cell mobility and cell differentiation, the composite films were immersed in simulated body fluid for periods of 1, 3 and 7 days. From scanning electron microscopy images, the surface of the P(3HB)/n‐BG composite microsphere films appeared fairly uniform and smooth on day 1; however on day 3 and day 7 a rough and uneven surface was observed. The presence of hydroxyapatite on the composite microsphere films on day 3 and day 7 influenced the surface roughness of the films. However, when the P(3HB)/n‐BG composite microsphere films with enhanced surface roughness were tested for biocompatibility, reduced amounts of protein adsorption and cell adhesion were observed. This study thus revealed that there is an optimal surface roughness for the P(3HB) microsphere films for increased cell adhesion, beyond which it could be deleterious for cell adhesion and differentiation. © 2016 Society of Chemical Industry  相似文献   
67.
Loss of fibrinogen is a feature of trauma-induced coagulopathy (TIC), and restoring this clotting factor is protective against hemorrhages. We compared the efficacy of cryoprecipitate, and of the fibrinogen concentrates RiaSTAP® and FibCLOT® in restoring the clot integrity in models of TIC. Cryoprecipitate and FibCLOT® produced clots with higher maximal absorbance and enhanced resistance to lysis relative to RiaSTAP®. The fibrin structure of clots, comprising cryoprecipitate and FibCLOT®, mirrored those of normal plasma, whereas those with RiaSTAP® showed stunted fibers and reduced porosity. The hemodilution of whole blood reduced the maximum clot firmness (MCF) as assessed by thromboelastography. MCF could be restored with the inclusion of 1 mg/mL of fibrinogen, but only FibCLOT® was effective at stabilizing against lysis. The overall clot strength, measured using the Quantra® hemostasis analyzer, was restored with both fibrinogen concentrates but not cryoprecipitate. α2antiplasmin and plasminogen activator inhibitor-1 (PAI-1) were constituents of cryoprecipitate but were negligible in RiaSTAP® and FibCLOT®. Interestingly, cryoprecipitate and FibCLOT® contained significantly higher factor XIII (FXIII) levels, approximately three-fold higher than RiaSTAP®. Our data show that 1 mg/mL fibrinogen, a clinically achievable concentration, can restore adequate clot integrity. However, FibCLOT®, which contained more FXIII, was superior in normalizing the clot structure and in stabilizing hemodiluted clots against mechanical and fibrinolytic degradation.  相似文献   
68.
Although the eukaryotic elongation factor eEF1A1 plays a role in various tumours, there is little information on its prognosis/therapeutic value in prostate carcinoma. In high-grade and castration-resistant prostate carcinoma (CRPC), the identification of novel therapeutic markers/targets remains a priority. The expression of eEF1A1 protein was determined in formalin-fixed, paraffin-embedded prostate cancer and hyperplasia tissue by IHC. The role of eEF1A1 was investigated in a cellular model using a DNA aptamer (GT75) we previously developed. We used the aggressive CRPC cancer PC-3 and non-tumourigenic PZHPV-7 lines. Cytotoxicity was measured by the MTS assay and eEF1A1 protein levels by in-cell Western assays. The mRNA levels of eEF1A1 were measured by qPCR and ddPCR. Higher expression of eEF1A1 was found in Gleason 7–8 compared with 4–6 tissues (Gleason ≥ 7, 87% versus Gleason ≤ 6, 54%; p = 0.033). Patients with a high expression of eEF1A1 had a worse clinical outcome. In PC-3, but not in PZHPV-7, GT75 decreased cell viability and increased autophagy and cell detachment. In PC-3 cells, but not in PZHPV-7, GT75 mainly co-localised with the fraction of eEF1A1 bound to actin. Overexpression of the eEF1A1 protein can identify aggressive forms of prostate cancer. The targeting of eEF1A1 by GT75 impaired cell viability in PC-3 cancer cells but not in PZHPV-7 non-tumourigenic cells, indicating a specific role for the protein in cancer survival. The eEF1A1–actin complexes appear to be critical for the viability of PC-3 cancer cells, suggesting that eEF1A1 may be an attractive target for therapeutic strategies in advanced forms of prostate cancer.  相似文献   
69.
Some 2,4-disubstituted quinazolines were synthesized and studied as multidrug resistance (MDR) reversers. The new derivatives carried the quinazoline-4-amine scaffold found in modulators of the ABC transporters involved in MDR, as the TKIs gefitinib and erlotinib. Their behaviour on the three ABC transporters, P-gp, MRP1 and BCRP, was investigated. Almost all compounds inhibited the P-gp activity in MDCK-MDR1 cells overexpressing P-gp, showing EC50 values in the nanomolar range ( 1 d , 1 e , 2 a , 2 c , 2 e ). Some compounds were active also towards MRP1 and/or BCRP. Docking results obtained by in silico studies on the P-gp crystal structure highlighted common features for the most potent compounds. The P-gp selective compound 1 e was able to increase the doxorubicin uptake in HT29/DX cells and to restore its antineoplastic activity in resistant cancer cells in the same extent of sensitive cells. Compound 2 a displayed a dual inhibitory effect showing good activities towards both P-gp and BCRP.  相似文献   
70.
The use of proper nanocarriers for dermal and transdermal delivery of anti-inflammatory drugs recently gained several attentions in the scientific community because they pass intact and accumulate payloads in the deepest layers of skin tissue. Ascorbyl palmitate-based vesicles (aspasomes) can be considered a promising nanocarrier for dermal and transdermal delivery due to their skin whitening properties and suitable delivery of payloads through the skin. The aim of this study was the synthesis of multidrug Idebenone/naproxen co-loaded aspasomes for the development of an effective anti-inflammatory nanomedicine. Aspasomes had suitable physicochemical properties and were safe in vivo if topically applied on human healthy volunteers. Idebenone/naproxen co-loaded aspasomes demonstrated an increased therapeutic efficacy of payloads compared to the commercially available Naprosyn® gel, with a rapid decrease of chemical-induced erythema on human volunteers. These promising results strongly suggested a potential application of Idebenone/naproxen multidrug aspasomes for the development of an effective skin anti-inflammatory therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号