首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
无线电   5篇
自动化技术   17篇
  2022年   1篇
  2012年   1篇
  2011年   4篇
  2010年   4篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
21.
We study the problem of localizing and tracking multiple moving targets in wireless sensor networks, from a network design perspective i.e. towards estimating the least possible number of sensors to be deployed, their positions and operation characteristics needed to perform the tracking task. To avoid an expensive massive deployment, we try to take advantage of possible coverage overlaps over space and time, by introducing a novel combinatorial model that captures such overlaps.  相似文献   
22.
We investigate the problem of how to achieve energy balanced data propagation in distributed wireless sensor networks. The energy balance property guarantees that the average per sensor energy dissipation is the same for all sensors in the network, throughout the execution of the data propagation protocol. This property is crucial for prolonging the network lifetime, by avoiding early energy depletion of sensors.We survey representative solutions from the state of the art. We first present a basic algorithm that in each step probabilistically decides whether to propagate data one-hop towards the final destination (the sink), or to send it directly to the sink. This randomized choice trades-off the (cheap, but slow) one-hop transmissions with the direct transmissions to the sink, which are more expensive but bypass the bottleneck region around the sink and propagate data fast. By a detailed analysis using properties of stochastic processes and recurrence relations we precisely estimate (even in closed form) the probability for each propagation option necessary for energy balance.The fact (shown by our analysis) that direct (expensive) transmissions to the sink are needed only rarely, shows that our protocol, besides energy balanced, is also energy efficient. We then enhance this basic result by surveying some recent findings including a generalized algorithm and demonstrating the optimality of this two-way probabilistic data propagation, as well as providing formal proofs of the energy optimality of the energy balance property.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号