首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   438篇
  免费   28篇
电工技术   1篇
综合类   2篇
化学工业   136篇
金属工艺   1篇
机械仪表   12篇
建筑科学   28篇
矿业工程   1篇
能源动力   9篇
轻工业   91篇
水利工程   5篇
无线电   14篇
一般工业技术   64篇
冶金工业   61篇
原子能技术   2篇
自动化技术   39篇
  2024年   2篇
  2023年   9篇
  2022年   18篇
  2021年   28篇
  2020年   16篇
  2019年   11篇
  2018年   11篇
  2017年   20篇
  2016年   24篇
  2015年   17篇
  2014年   22篇
  2013年   35篇
  2012年   27篇
  2011年   37篇
  2010年   25篇
  2009年   20篇
  2008年   19篇
  2007年   13篇
  2006年   10篇
  2005年   11篇
  2004年   6篇
  2002年   8篇
  2001年   6篇
  2000年   9篇
  1999年   7篇
  1998年   9篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   5篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1976年   4篇
  1975年   2篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1955年   1篇
排序方式: 共有466条查询结果,搜索用时 15 毫秒
21.
BACKGROUND: The impact of mixtures of chloro‐triazinic herbicides, such as atrazine and simazine, on aquatic ecosystems is of environmental concern. To study their biodegradation under various operational conditions, a binary community comprising Stenotrophomonas maltophilia and Arthrobacter sp. attached to the porous support of a packed bed reactor, was evaluated. RESULTS: The genetic analysis of the two atrazine‐degrading strains revealed that genes atzA, atzB, atzC are present in both bacteria, but only S. maltophilia possess atzD. Thus, by cultivating Arthrobacter sp. on these herbicides, cyanuric acid accumulation was observed. When the binary community was cultivated in the biofilm reactor, at all the loading rates probed, both herbicides were entirely removed. However, complete biodegradation of cyanuric acid was not achieved. CONCLUSIONS: Even with a two‐stage reactor, cyanuric acid was only partially removed. This fact could be attributed to the absence, in the second stage, of an easily degradable energy source, required by S. maltophilia for the uptake and cometabolic degradation of the recalcitrant heterocyclic ring. Responding to differences in nutritional conditions prevailing at each reactor stage, local differences in species' predominance were clearly detected by microbiological and molecular biology methods. Copyright © 2010 Society of Chemical Industry  相似文献   
22.
Polystyrene (PS) blocks in poly(styrene-b-isobutylene-b-styrene) (PS-PIB-PS) block copolymers were partially sulfonated and the acid groups converted to Na+SO3 groups to create ionomers. Then, dimethylacetamide was used to selectively swell the ionic PS domains and the swollen films were exposed to sol-gel reactive tetraethylorthosilicate solutions. (EtO)4−xSi(OH)x monomers then permeated films so that sol-gel reactions occurred within/around the ionic PS domains. Environmental scanning electron microscopy/energy dispersive X-ray spectroscopy investigations showed that silicate structures can be incorporated within the interior of the ionomer films. Differential scanning calorimetry studies indicated that there is no variance in the PIB block Tg with respect to ionomer formation, or with respect to silicate loading of the ionomer at low levels, which suggests that the silicate component does not reside in the PIB phase. 23Na solid state NMR spectroscopy detected isolated Na+SO3 groups as well as aggregated SO3Na+ ion pairs for ‘as cast’ and ‘dry’ non-silicate containing ionomer samples. In a hydrated sample, almost all Na+ ions were solvent-separated. AFM analysis showed that phase separation exists, but that the degree of order is significantly less than that for hybrids based on the corresponding benzyltrimethylammonium ionomer. This frustrated morphology was also seen in the results of small angle X-ray scattering experiments. Given the scale of organic/inorganic heterogeneity, these hybrids are properly classified as nanocomposites.  相似文献   
23.
The net transfer of labeled α-tocopherol from donor to acceptor lipoproteins at physiological concentrations was investigated. Labeled lipoproteins were isolated i) followingin vitro addition of [3,4-3H]all rac-α-tocopherol to plasma, or ii) from plasma obtained 12–16 h after ingestion by normal subjects of an oral dose (100 mg each) of 2R,4′R,8′R-α-[5,7-(C2H3)2]tocopheryl acetate and 2S,4′R′,R-α-[5-C2H3]tocopheryl acetate. A constant amount (on a protein basis) of labeled lipoprotein was incubated with an increasing amount of unlabeled acceptor lipoprotein for 2 h at 37°C. No discrimination between stereoisomers of α-tocopherol was detected. Labeled VLDL and labeled LDL (very low and low density lipoproteins, respectively) tended to retain their labeled tocopherol. Labeled high density lipoproteins (HDL) readily transferred the labeled tocopherol to VLDL (>60% transferred), while the transfer to LDL was dependent upon the ratio of labeled HDL/LDL with a lower net transfer at higher ratios. This dependency of the distribution of tocopherol upon the ratio of HDL/LDL was also observedin vivo. The tocopherol/mg HDL protein was measured in 11 subjects with varying HDL levels. As the %HDL in the plasma increased from 14 to 50%, the tocopherol/HDL protein also increased (r2=0.37,P<0.05).  相似文献   
24.
We have recently shown that docosahexaenoic acid (DHA) is necessary for survival and differentiation of rat retinal photoreceptors during development in vitro. In cultures lacking DHA, retinal neurons developed normally for 4 d; then photoreceptors selectively started an apoptotic pathway leading to extensive degeneration of these cells by day 11. DHA protected photoreceptors by delaying the onset of apoptosis; in addition, it advanced photoreceptor differentiation, promoting opsin expression and inducing apical differentiation in these neurons. DHA was the only fatty acid having these effects. Mitochondrial damage accompanied photoreceptor apoptosis and was markedly reduced upon DHA supplementation. This suggests that a possible mechanism of DHA-mediated photoreceptor protection might be the preservation of mitochondrial activity; a critical amount of DHA in mitochondrial phospholipids might be required for proper functioning of these organelles, which in turn might be essential to avoid cell death. Müller cells in culture appeared to be involved in DHA processing: they took up DHA, incorporated in into glial phospholipids, and channeled it to photoreceptors in coculture. Both Müller cells, when cocultured with neuronal cells, and the glial-derived neurotrophic factor (GDNF) protected photoreceptors from cell death. These results suggest that glial cells may play a central role in regulating photoreceptor survival during development through the provision of trophic factors. The multiple effects of DHA on photoreceptors suggest that in addition to its structural role, DHA might be one of the trophic factors required by these cells.  相似文献   
25.
26.
Gadolinium‐doped ceria (GDC) and yttria‐stabilized zirconia (YSZ) are well‐known electrolyte materials in solid oxide fuel cells (SOFCs). Although they can be used independently, it is common to find them in combination in SOFCs, where they are used as protective layers against the formation of secondary phases or electron conduction blockers. Despite their different optimum operating temperatures, it appears that oxygen conduction is not affected by their interface. However, the intrinsic mechanisms of oxygen diffusion at these interfaces still remain unclear. One of the main difficulties when modeling the contact between different materials, or indeed different particles of the same material, is caused by the structural complexity of these systems. If we wish to evaluate the properties of the materials, we first need to obtain a model that includes the main features of the GDC/YSZ interface, such as large‐scale defects or cation interdiffusion in the contiguous phase. Since the generation of such a mixed system is complicated, we show here how the “amorphization and recrystallization” strategy can help us to obtain realistic systems. In this, the first of our papers on the structure and properties of layered GDC/YSZ materials, we discuss the structural features of the grain boundary between GDC and YSZ obtained by molecular dynamics simulations.  相似文献   
27.
This study examined the effect of the freeze‐thaw process on the physical properties of films prepared from scleroglucan (Scl) hydrogels, suitable for drug delivery applications. Films made from Scl, using glycerol as plasticizer, were prepared from hydrogels by two procedures: a room temperature drying (RTD) method and a freeze‐thaw cyclic process, before the application of RTD, which results in a reinforced physically cross‐linked network. Films were characterized by studies of water vapor transmission (WVT), swelling, tensile tests, ESEM microscopy, FTIR, and drug release measurements. These determinations showed significant differences between films obtained by both treatments. The films prepared through freeze‐thaw cycles showed an important increase of the tensile strength with respect to those corresponding to films only air dried and a decreasing swelling degree in direct relationship to the number of freeze‐thaw cycles. A model drug, Theophylline, was included in these biocompatible films for in vitro drug release measurements, using a flat Franz cell. The physical differences observed between Scl films prepared with both methods can be explained proposing that the number of crosslinking points by hydrogen bonding increase when increasing the number of freezing and thawing cycles used for film preparation. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
28.
The internal textures of crystals of moderately radiation-damaged monazite-(Ce) from Moss, Norway, indicate heavy, secondary chemical alteration. In fact, the cm-sized specimens are no longer mono-mineral monazite but rather a composite consisting of monazite-(Ce) and apatite pervaded by several generations of fractures filled with sulphides and a phase rich in Th, Y, and Si. This composite is virtually a 'pseudomorph' after primary euhedral monazite crystals whose faces are still well preserved. The chemical alteration has resulted in major reworking and decomposition of the primary crystals, with potentially uncontrolled elemental changes, including extensive release of Th from the primary monazite and local redeposition of radionuclides in fracture fillings. This seems to question the general alteration-resistance of orthophosphate phases in a low-temperature, 'wet' environment, and hence their suitability as potential host ceramics for the long-term immobilisation of radioactive waste.  相似文献   
29.
The machining of shape memory alloys (SMAs), such as NiTi based alloys, is a very interesting and relevant topic for several industrial applications in the biomedical, sensor and actuator fields. Laser technology is one of the most suitable methods for the manufacturing of products in the aforementioned fields, mainly when small and precise features have to be included. Due to the thermal nature of this process, study of its effect on the functional properties of these materials is needed. Except for binary NiTi, few results on the laser machining of NiTi based alloys are available in the literature. In this work, thin sheets of Ni40Ti50Cu10 (at.%) were processed by a fibre laser and the effect of process speed on the material properties was analysed. Scanning electronic microscopy was adopted for observation of the laser cut edges’ morphology. Chemical composition of the processed material was evaluated by energy dispersion spectroscopy and nanohardness measurements were used to estimate the heat affected zone. SMA functional properties were studied on both base and laser machined material. These characteristics are affected by laser machining for the presence of melted material; this effect can be minimised by increasing the laser process speed.  相似文献   
30.
Environmentally-mediated drug resistance in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) significantly contributes to relapse. Stromal cells in the bone marrow environment protect leukemia cells by secretion of chemokines as cues for BCP-ALL migration towards, and adhesion to, stroma. Stromal cells and BCP-ALL cells communicate through stromal galectin-3. Here, we investigated the significance of stromal galectin-3 to BCP-ALL cells. We used CRISPR/Cas9 genome editing to ablate galectin-3 in stromal cells and found that galectin-3 is dispensable for steady-state BCP-ALL proliferation and viability. However, efficient leukemia migration and adhesion to stromal cells are significantly dependent on stromal galectin-3. Importantly, the loss of stromal galectin-3 production sensitized BCP-ALL cells to conventional chemotherapy. We therefore tested novel carbohydrate-based small molecule compounds (Cpd14 and Cpd17) with high specificity for galectin-3. Consistent with results obtained using galectin-3-knockout stromal cells, treatment of stromal-BCP-ALL co-cultures inhibited BCP-ALL migration and adhesion. Moreover, these compounds induced anti-leukemic responses in BCP-ALL cells, including a dose-dependent reduction of viability and proliferation, the induction of apoptosis and, importantly, the inhibition of drug resistance. Collectively, these findings indicate galectin-3 regulates BCP-ALL cell responses to chemotherapy through the interactions between leukemia cells and the stroma, and show that a combination of galectin-3 inhibition with conventional drugs can sensitize the leukemia cells to chemotherapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号