The effect of alloying elements Mn, Cr, and Si on the magnetic hysteresis properties of cementite and model steels with a carbon concentration of 0.6 wt % has been studied. It has been shown that alloying with carbide-forming elements (Mn, Cr) reduces the coercive force and the Curie temperature of cementite. Measurements of the temperature dependences of the coercive force of the model steels with carbon content of 0.6 wt % alloyed with manganese, chromium, or silicon have been performed in the temperature range of ?196 to +300°C. It has been established that the local maximum of the coercive force of these steels in this temperature range coincides with the Curie point of the precipitates of the carbide phases. Based on an analysis of the temperature dependences of the coercive force, the content of the alloying element in the precipitates of cementite of steels tempered at different temperatures has been estimated. It has been shown that the character of the dependence of the coercive force of alloy steels on the temperature of tempering in the temperature range of 250–700°C is mainly determined by the coercivity and by the kinetics of the formation of cementite precipitates. 相似文献
In Parts 1 and 2 of this three-part paper, a mechanistic cutting force model was developed and machined surface errors for steady cuts under fixed cutting conditions were predicted. The virtual machining system aims to simulate and analyze the machining and the machined states in a general flat end-milling process. This frequently involves transient as well as steady cuts. Therefore, a method for simulating the cutting process of transient cuts needs to be developed to realize the virtual machining system concept. For this purpose, this paper presents a moving edge-node (ME) Z-map model for the cutting configuration calculation. The simulation results of four representative transient cuts in two-dimensional pocket milling and an application of off-line feed-rate scheduling are also given.
In transient cuts, the cutting configurations that are used to predict the cutting force vary during the machining operation. The cutting force model (Part 1) and surface error prediction method (Part 2) were developed for steady cuts; these are extended to transient situations using the ME Z-map model to calculate the varying cutting configurations efficiently. The cutting force and surface errors are then predicted. To validate the feasibility of the proposed scheme, the measured and predicted cutting forces for transient test cuts were compared. The predicted surface error maps for transient cuts were constructed using a computer simulation. Also, off-line feed-rate scheduling is shown to be more accurately performed by applying the instantaneous cutting coefficients that were defined in Part I. 相似文献
Lactose crystallization may occur during spray drying, depending on the operating conditions for drying, and this work reviews previous and new evidence for the effects of different additives or plasticizers on retarding or accelerating the rate of crystallization. The effects of different operating conditions during spray drying are also considered in the experimental work reviewed and performed here, which was mainly carried out with Buchi B-290 laboratory-scale spray dryers (Buchi, Flawil, Switzerland), although some work on pilot-scale equipment is also discussed. The additives used and reviewed in this article include milk proteins, such as casein and whey protein isolate, polyethylene glycol, and ascorbic acid. The key physical properties, such as glass transition temperature and drying characteristics of the material, are discussed, allowing degrees of amorphicity in spray-dried lactose to be controlled over a wide range, from close to 0% to nearly 100%. 相似文献
As one of the most typical and promising membrane processes, electrodialysis (ED) technique plays a more and more significant role in industrial separation. Especially, the separation of monovalent cations and multivalent cations is currently a hot topic, which is not only desirable for many industries but also challenging for academic explorations. The main aim of the present contribution is to view the advances of a wide variety of monovalent cation perm-selective membranes (MCPMs) and their preparation technologies including (1) covalent crosslinking,(2) surface modification, (3) polymer blending, (4) electrospinning, (5) nanofiltration alike membrane, and (6) organic–inorganic hybrid. The relevant advantages and disadvantageswith respect to some specific cases have been discussed and compared in detail. Furthermore, we elaborately discuss the opportunities and challenges of MCPMs, the fabricating strategies to take and the future perspectives. 相似文献
Cellulose microfibers were modified with two different bi‐functional monomers. Composites of EVA copolymer with modified and unmodified cellulose were prepared by melt mixing. The samples were analyzed by SEM, XRD, FT‐IR, DSC, TGA, DMTA and tensile mechanical tests. SEM showed that the presence of reactive groups on cellulose surface enhanced the compatibility, improving the fiber/matrix interfacial adhesion. FT‐IR disclosed the occurrence of chemical reactions between the functionalized cellulose and polymer chains. The incorporation of fibers affected the crystallization behaviour and crystallinity of the polymer matrix. Composites with GMA modified cellulose displayed better compatibility, higher thermal and mechanical properties.
Heavy alloy parts from W-8%Ni-2%Cu powder mix were fabricated by MIM using a feedstock with 50 vol.% binder. The binder was removed by solvent de-binding followed by thermal de-binding. Sintering of the heavy alloy brown parts was investigated by employing various thermoanalytical techniques such as DIL, TGA and DTA up to 1460 °C. During sintering, the evolved gases were analyzed in a mass spectrometer which was coupled to the dilatometer. Thermal analysis helps to understand the sintering process regarding phase transformation, melting of alloy matrix and chemical reactions. From these thermoanalytical measurements, a kinetic analysis was made. High sintered density (> 99%) and fine-grained homogeneous microstructures were achieved by rate controlled sintering as confirmed by metallographic analysis. 相似文献
The failure analysis of an air crash conclusively shows that the cage of the central main bearing of the compressor region failed due to fatigue. The broken piece of the cage got struck between the bearing balls and the races and impaired the function of the bearing resulting in the crash. 相似文献