首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2486篇
  免费   133篇
  国内免费   1篇
电工技术   26篇
综合类   1篇
化学工业   629篇
金属工艺   41篇
机械仪表   56篇
建筑科学   74篇
矿业工程   2篇
能源动力   101篇
轻工业   170篇
水利工程   8篇
石油天然气   4篇
无线电   287篇
一般工业技术   488篇
冶金工业   125篇
原子能技术   11篇
自动化技术   597篇
  2024年   2篇
  2023年   32篇
  2022年   43篇
  2021年   66篇
  2020年   64篇
  2019年   53篇
  2018年   73篇
  2017年   62篇
  2016年   90篇
  2015年   63篇
  2014年   104篇
  2013年   179篇
  2012年   184篇
  2011年   228篇
  2010年   174篇
  2009年   147篇
  2008年   148篇
  2007年   151篇
  2006年   103篇
  2005年   89篇
  2004年   68篇
  2003年   53篇
  2002年   54篇
  2001年   49篇
  2000年   34篇
  1999年   40篇
  1998年   57篇
  1997年   41篇
  1996年   21篇
  1995年   17篇
  1994年   17篇
  1993年   18篇
  1992年   20篇
  1991年   10篇
  1990年   12篇
  1989年   6篇
  1988年   4篇
  1987年   9篇
  1986年   6篇
  1985年   2篇
  1984年   3篇
  1983年   5篇
  1982年   5篇
  1979年   1篇
  1978年   2篇
  1977年   4篇
  1976年   3篇
  1975年   1篇
  1970年   1篇
  1956年   1篇
排序方式: 共有2620条查询结果,搜索用时 15 毫秒
51.
本文用一种创新的方法提出了四种功率因数校正(PFC)电路设计。两种临界导通模式(CRM)升压.一种连续导通模式(CCM)升压和一种CCM单段回扫,并且推荐了基于功率要求、效率、失真程度、电路板空间和成本限制的解决方案。  相似文献   
52.
A pseudojoint estimation of time scale and time delay between an unknown deterministic transient type signal and a reference signal is proposed. The method is based on the separation between the estimations of the two dependent parameters. The time autocorrelation function (TACF) preserves the time scale and is invariant with respect to the time delay between the signals. The time scale factor can, thus, be estimated independently from time delay using the TACFs of the two signals. After estimating the time scale factor, the signal can be scaled by the estimated amount. The time delay is then estimated without bias due to the time scale factor. To obtain high resolution joint estimates, the time scale factor is estimated in the scale domain from the scale transforms of the TACFs of the two signals. The proposed method has low computational cost. Moreover, the results on synthetic signals show good performance of the method with respect to the Cramér-Rao Lower Bound and the joint Maximum Likelihood Estimation. A possible application of the technique to the analysis of electromyogram (EMG) signals detected during electrically elicited contractions is also presented. In a few representative cases, it is shown that the time scale estimate reveals myoelectric manifestations of muscle fatigue and is less affected by M-wave truncation than spectral EMG attributes.  相似文献   
53.
The multifunctionality of graphene has the potential to unlock important developments in nanocomposite science. However, the manipulation of graphene without interfering with its unique properties and while controlling its spatial organization remains challenging. Here, the formation of a photoaddressable liquid crystalline (LC) solution through the stabilization of graphene oxide (GO) with photocleavable brushes is described. The LC behavior leads to the thermodynamic entrapment of GO into low aspect ratio domains that fail to display the properties typically predicted for graphene nanocomposites. The morphology and structural and electronic performance of these nanocomposites are regenerated through the brush cleavage, which controls the phase transition of the LC phase. These results show that kinetic control of graphene assembly can be an attractive tool toward the dynamic regulation of processable sol states and structured percolated networks for rational composite manufacturing.  相似文献   
54.
A new formulation of active contours based on explicit functions has been recently suggested. This novel framework allows real-time 3-D segmentation since it reduces the dimensionality of the segmentation problem. In this paper, we propose a B-spline formulation of this approach, which further improves the computational efficiency of the algorithm. We also show that this framework allows evolving the active contour using local region-based terms, thereby overcoming the limitations of the original method while preserving computational speed. The feasibility of real-time 3-D segmentation is demonstrated using simulated and medical data such as liver computer tomography and cardiac ultrasound images.  相似文献   
55.
Validation of image registration algorithms is a difficult task and open-ended problem, usually application-dependent. In this paper, we focus on deep brain stimulation (DBS) targeting for the treatment of movement disorders like Parkinson's disease and essential tremor. DBS involves implantation of an electrode deep inside the brain to electrically stimulate specific areas shutting down the disease's symptoms. The subthalamic nucleus (STN) has turned out to be the optimal target for this kind of surgery. Unfortunately, the STN is in general not clearly distinguishable in common medical imaging modalities. Usual techniques to infer its location are the use of anatomical atlases and visible surrounding landmarks. Surgeons have to adjust the electrode intraoperatively using electrophysiological recordings and macrostimulation tests. We constructed a ground truth derived from specific patients whose STNs are clearly visible on magnetic resonance (MR) T2-weighted images. A patient is chosen as atlas both for the right and left sides. Then, by registering each patient with the atlas using different methods, several estimations of the STN location are obtained. Two studies are driven using our proposed validation scheme. First, a comparison between different atlas-based and nonrigid registration algorithms with a evaluation of their performance and usability to locate the STN automatically. Second, a study of which visible surrounding structures influence the STN location. The two studies are cross validated between them and against expert's variability. Using this scheme, we evaluated the expert's ability against the estimation error provided by the tested algorithms and we demonstrated that automatic STN targeting is possible and as accurate as the expert-driven techniques currently used. We also show which structures have to be taken into account to accurately estimate the STN location.  相似文献   
56.
57.
The color of polymer solar cells using an opaque electrode is given by the reflected light, which depends on the composition and thickness of each layer of the device. Metal‐oxide‐based optical spacers are intensively studied in polymer solar cells aiming to optimize the light absorption. However, the low conductivity of materials such as ZnO and TiO2 limits the thickness of such optical spacers to tenths of nanometers. A novel synthesis route of cluster‐free Al‐doped ZnO (AZO) nanocrystals (NCs) is presented for solution processing of highly conductive layers without the need of temperature annealing, including thick optical spacers on top of polymer blends. The processing of 80 nm thick optical spacers based on AZO nanocrystal solutions on top of 200 nm thick polymer blend layer is demonstrated leading to improved photocurrent density of 17% compared to solar cells using standard active layers of 90 nm in combination with thin ZnO‐based optical spacers. These AZO NCs also open new opportunities for the processing of high‐efficiency color tuned solar cells. For the first time, it is shown that applying solution‐processed thick optical spacer with polymer blends of different thicknesses can process solar cells of similar efficiency over 7% but of different colors.  相似文献   
58.
In this work, a soft‐lithographic approach to fabricate submicrometer metal organic framework (MOF)‐based 2D photonic structures is described. Nanometric zeolitic imidazole framework material ZIF‐8 (zinc) is chosen as the sensible MOF material because of its chemical stability and its vapor selective adsorption properties. Two different systems are fabricated: nanopatterned colloidal ZIF‐8 homo‐ and ZIF‐8/TiO2 heterostructures. Several features (stripes, squares, etc.) with dimensions of 200 nm are replicated on different substrates such as silicon, flexible plastics, and even aluminum cans, over relatively large surfaces (up to 1 cm2). In addition, the use of these photonic MOF‐heterostructures as very low‐cost sensing platforms compatible with smartphone technology is demonstrated. This method relies on the evaluation of the change in diffraction efficiency of the photonic MOF‐patterns, induced by the MOF refractive index variation, which is simply detected by a charge coupled device (CCD) camera, as those integrated in smartphones, without need for complex optical instrumentations for transduction data processing. Performances of the sensors are first evaluated using isopropyl alcohol adsorption/desorption cycling as a model case. In addition, a “real” environmental issue is tackled. Selective detection of styrene in presence of interfering water is demonstrated at concentrations below the human permissible exposure limit. In situ ellispometric analyses are also carried out in order to confirm the sensor performances and to propose a mechanism for styrene uptake into the nanoMOFs.  相似文献   
59.
Microprocessor-based signal processing equipment for frequencies up to 20 kHz have become compact and fast enough to allow direct on-line real-time analysis on power systems to determine behavior. A case study is presented for a small steelworks operating a 25-MVA open arc furnace, installing 6.5 MVA of thyristor control equipment and further power factor correcting equipment and harmonic filters on a system with ill-defined parameters, low short- circuit capacity, and already containing power factor correcting capacitors tuned at the third harmonic. Discrete spectrum analysis equipment, microprocessor-based and coupled via IEEE-bus to a microcomputer system, was used to do on-line analysis at various points in the system. The high-speed system enabled sophisticated signal processing to yield even and uneven harmonics, stochastic components, system parameters and resonances and mutual interference. It is shown how this is used to rectify problems in the system, adapt equipment, and design power factor and filter equipment.  相似文献   
60.
This report reviews the analysis used to extract the complex conductivity of a compound from a microwave cavity perturbation measurement. We intend to present a generalized treatment valid for any spheroidally shaped sample of arbitrary conductivity which is placed at either the electric or magnetic field antinode of the cavity. To begin with, we establish the relationship between the measured parameters and the conductivity for a spherical sample. Next, we extend these results to the case of spheroids; and for the first time, we cover all different configurations that one can possibly use to study an arbitrary conducting sample inside a cavity: in particular, all possible orientations of the sample with respect to the applied field are solved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号