首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   12篇
电工技术   2篇
化学工业   53篇
金属工艺   9篇
机械仪表   7篇
建筑科学   9篇
能源动力   3篇
轻工业   18篇
水利工程   2篇
无线电   10篇
一般工业技术   39篇
冶金工业   7篇
原子能技术   4篇
自动化技术   35篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   4篇
  2015年   6篇
  2014年   6篇
  2013年   27篇
  2012年   9篇
  2011年   11篇
  2010年   12篇
  2009年   3篇
  2008年   7篇
  2007年   9篇
  2006年   4篇
  2005年   7篇
  2004年   1篇
  2003年   4篇
  2002年   4篇
  2001年   5篇
  2000年   1篇
  1999年   6篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   5篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1984年   5篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1978年   4篇
  1977年   3篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1954年   1篇
排序方式: 共有198条查询结果,搜索用时 15 毫秒
191.
We consider the infinite horizon quadratic cost minimization problem for a linear system with finitely many inputs and outputs. A common approach to treat a problem of this type is to construct a semigroup in an abstract state space, and to use infinite-dimensional control theory. However, this approach is less appealing in the case where there are discrete time delays in the impulse response, because such time delays force both the control operator and the observation operator to be unbounded at the same time. In order to be able to include this case we take an alternative approach. We work in an input-output framework, and reduce the problem to a symmetric Wiener-Hopf problem, that can be solved by means of a canonical factorization of the symbol. In a standard shift semigroup realization this amounts to factorizations of the Riccati operator and the feedback operator into convolution operators and projections. Our approach leads to a new significant discovery: in the case where the impulse response of the system contains discrete time delays, the standard Riccati equation is incorrect; to get the correct Riccati equation the feed-through matrix of the system must be partially replaced by the feed-through matrix of the spectral factor. This means that, before it is even possible to write down the correct Riccati equation, a spectral factorization problem must first be solved to find one of the weighting matrices in this equation.  相似文献   
192.
Quantitative analysis of pharmaceutical formulations using the new approach of transmission Raman spectroscopy has been investigated. For comparison, measurements were also made in conventional backscatter mode. The experimental setup consisted of a Raman probe-based spectrometer with 785 nm excitation for measurements in backscatter mode. In transmission mode the same system was used to detect the Raman scattered light, while an external diode laser of the same type was used as excitation source. Quantitative partial least squares models were developed for both measurement modes. The results for tablets show that the prediction error for an independent test set was lower for the transmission measurements with a relative root mean square error of about 2.2% as compared with 2.9% for the backscatter mode. Furthermore, the models were simpler in the transmission case, for which only a single partial least squares (PLS) component was required to explain the variation. The main reason for the improvement using the transmission mode is a more representative sampling of the tablets compared with the backscatter mode. Capsules containing mixtures of pharmaceutical powders were also assessed by transmission only. The quantitative results for the capsules' contents were good, with a prediction error of 3.6% w/w for an independent test set. The advantage of transmission Raman over backscatter Raman spectroscopy has been demonstrated for quantitative analysis of pharmaceutical formulations, and the prospects for reliable, lean calibrations for pharmaceutical analysis is discussed.  相似文献   
193.
194.
A single-chip electrochemical method based on impedance measurements in resonance mode has been employed to study lipid monolayer and bilayer formation on hydrophobic alkanethiolate and SiO(2) substrates, respectively. The processes were monitored by temporally resolving changes in interfacial capacitance and resistance, revealing information about the rate of formation, coverage, and defect density (quality) of the layers at saturation. The resonance-based impedance measurements were shown to reveal significant differences in the layer formation process of bilayers made from (i) positively charged lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine (POEPC), (ii) neutral lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) on SiO(2), and (iii) monolayers made from POEPC on hydrophobic alkanethiolate substrates. The observed responses were represented with an equivalent circuit, suggesting that the differences primarily originate from the presence of a conductive aqueous layer between the lipid bilayers and the SiO(2). In addition, by adding the ion channel gramicidin D to bilayers supported on SiO(2), channel-mediated charge transport could be measured with high sensitivity (resolution around 1 pA).  相似文献   
195.
From macro- to nanoscales, adhesion phenomena are all-pervasive in nature yet remain poorly understood. In recent years, studies of biological adhesion mechanisms, terrestrial and marine, have provided inspiration for "biomimetic" adhesion strategies and important insights for the development of fouling-resistant materials. Although the focus of most contemporary bioadhesion research is on large organisms such as marine mussels, insects and geckos, adhesion events on the micro/nanoscale are critical to our understanding of important underlying mechanisms. Observing and quantifying adhesion at this scale is particularly relevant for the development of biomedical implants and in the prevention of marine biofouling. However, such characterization has so far been restricted by insufficient quantities of material for biochemical analysis and the limitations of contemporary imaging techniques. Here, we introduce a recently developed optical method that allows precise determination of adhesive deposition by microscale organisms in situ and in real time; a capability not before demonstrated. In this extended study we used the cypris larvae of barnacles and a combination of conventional and imaging surface plasmon resonance techniques to observe and quantify adhesive deposition onto a range of model surfaces (CH(3)-, COOH-, NH(3)-, and mPEG-terminated SAMs and a PEGMA/HEMA hydrogel). We then correlated this deposition to passive adsorption of a putatively adhesive protein from barnacles. In this way, we were able to rank surfaces in order of effectiveness for preventing barnacle cyprid exploration and demonstrate the importance of observing the natural process of adhesion, rather than predicting surface effects from a model system. As well as contributing fundamentally to the knowledge on the adhesion and adhesives of barnacle larvae, a potential target for future biomimetic glues, this method also provides a versatile technique for laboratory testing of fouling-resistant chemistries.  相似文献   
196.
197.
Rumen degradation of cell wall polysaccharide constituents using the in sacco technique was studied for untreated cereal brans (oats, wheat and barley) and nine technically alkali-treated batches of barley straw. The alkali treatment included four ammonia treatments, two dry sodium hydroxide treatments and three wet sodium hydroxide treatments. On degradation of the cell wall polysaccharides, their main constituents, xylose and glucose, were released at about the same rate for the ammonia treatments and the dry sodium hydroxide treatments. For the wet sodium hydroxide treatments the degradation of the xylose residues was faster than the liberation of the glucose residues. For all treatments the liberation of the arabinose residues was faster than that of the xylose and glucose residues. The reason for the increased digestibility of the cell wall polysaccharides is suggested to be the breaking of ester and hydrogen bonds and the breaking of alkali-labile linkages in lignin, as well as changes in the surface layer of the straw. For the wet sodium hydroxide treatments the larger amount of water present during the alkali treatment processes is suggested to increase the diffusion of the alkali into the straw and to translocate a part of the hemicellulose. On the degradation of wheat and barley bran the liberation of xylose residues was fast whereas xylose and arabinose residues in oat bran were slowly liberated.  相似文献   
198.
The long-term future of information storage requires the use of sustainable nanomaterials in architectures operating at high frequencies. Interfaces can play a key role in this pursuit via emergent functionalities that break out from conventional operation methods. Here, spin-filtering effects and photocurrents are combined at metal-molecular-oxide junctions in a hybrid magneto-capacitive memory. Light exposure of metal-fullerene-metal oxide devices results in spin-polarized charge trapping and the formation of a magnetic interface. Because the magnetism is generated by a photocurrent, the writing time is determined by exciton formation and splitting, electron hopping, and spin-dependent trapping. Transient absorption spectroscopy measurements show changes in the electronic states as a function of the magnetic history of the device within picoseconds of the optical pumping. The stored information is read using time-resolved scanning magneto optic Kerr effect measurements during microwave irradiation. The emergence of a magnetic interface in the picosecond timescale opens new paths of research to design hybrid magneto-optic structures operating at high frequencies for sensing, computing, and information storage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号