首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48155篇
  免费   2652篇
  国内免费   60篇
电工技术   340篇
综合类   39篇
化学工业   10431篇
金属工艺   927篇
机械仪表   958篇
建筑科学   1464篇
矿业工程   99篇
能源动力   1292篇
轻工业   8314篇
水利工程   439篇
石油天然气   215篇
武器工业   7篇
无线电   1871篇
一般工业技术   7491篇
冶金工业   10243篇
原子能技术   273篇
自动化技术   6464篇
  2023年   365篇
  2022年   684篇
  2021年   1295篇
  2020年   924篇
  2019年   1107篇
  2018年   1624篇
  2017年   1622篇
  2016年   1725篇
  2015年   1356篇
  2014年   1726篇
  2013年   3430篇
  2012年   2695篇
  2011年   2904篇
  2010年   2266篇
  2009年   2173篇
  2008年   2000篇
  2007年   1775篇
  2006年   1370篇
  2005年   1209篇
  2004年   1114篇
  2003年   993篇
  2002年   927篇
  2001年   664篇
  2000年   661篇
  1999年   711篇
  1998年   3187篇
  1997年   2160篇
  1996年   1433篇
  1995年   839篇
  1994年   686篇
  1993年   764篇
  1992年   280篇
  1991年   284篇
  1990年   204篇
  1989年   227篇
  1988年   220篇
  1987年   200篇
  1986年   165篇
  1985年   215篇
  1984年   168篇
  1983年   131篇
  1982年   163篇
  1981年   178篇
  1980年   190篇
  1979年   97篇
  1978年   97篇
  1977年   350篇
  1976年   744篇
  1975年   73篇
  1973年   84篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
991.
Polymeric carbon nitride was synthesized from urea and doped with Cu and Fe to act as co-catalysts. The material doped with Fe was a new composite material composed of Fe(III) oxides (acting as a co-catalyst) wrapped by the polymer layers and amorphous carbon. Furthermore, the copper doped material was described in a previous report. The photocatalytic degradation of the azo dye direct blue 1 (DB) was studied using as photocatalysts: pure carbon nitride (CN), carbon nitride doped with Cu (CN-Cu) and carbon nitride doped with Fe (CN-Fe). The catalysts were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), by X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller method (BET), etc. The adsorption phenomenon was studied using the Langmuir and Freundlich models. For the kinetic study, a solution of 500 mg L?1 of DB1 was treated with each catalyst, visible light and H2O2. The dye concentration was measured by spectrophotometry at the wavelength of 565 nm, and the removal of the total organic content (TOC) was quantified. BET analysis yielded surface areas of 60.029, 20.116 and 70.662 m2g?1 for CN, CN-Cu and CN-Fe, respectively. The kinetics of degradation were pseudo-first order, whose constants were 0.093, 0.039 and 0.110 min?1 for CN, CN-Cu and CN-Fe, respectively. The total organic carbon (TOC) removal reached the highest value of 14.46% with CN-Fe.  相似文献   
992.
All‐in‐one material for microrocket propulsion featuring acid‐based bubble generation and magnetic guidance is presented. Electrochemically deposited iron serves as both a propellant, toward highly efficient self‐propulsion in acidic environments, and as a magnetic component enabling complete motion control. The new microrockets display longer lifetime and higher propulsion efficiency compared to previously reported active metal zinc‐based microrockets due to the chemical properties of iron and the unique structure of the microrockets. These iron‐based microrockets also demonstrate unique and attractive cargo towing and autonomous release capabilities. The latter is realized upon loss of the magnetic properties due to acid‐driven iron dissolution. More interestingly, these bubble‐propelled microrockets assemble via magnetic interactions into a variety of complex configurations and train structures, which enrich the behavior of micromachines. Modeling of the magnetic forces during the microrocket assembly and cargo capture confirms these unique experimentally observed assembly and cargo‐towing behaviors. These findings provide a new concept of blending propellant and magnetic components into one, toward simplifying the design and fabrication of artificial micro/nanomachines, realizing new functions and capabilities for a variety of future applications.  相似文献   
993.
The combination of complementary techniques to characterize materials at the nanoscale is crucial to gain a more complete picture of their structure, a key step to design and fabricate new materials with improved properties and diverse functions. Here it is shown that correlative atomic force microscopy (AFM) and localization‐based super‐resolution microscopy is a useful tool that provides insight into the structure and emissive properties of fluorescent β‐lactoglobulin (βLG) amyloid‐like fibrils. These hybrid materials are made by functionalization of βLG with organic fluorophores and quantum dots, the latter being relevant for the production of 1D inorganic nanostructures templated by self‐assembling peptides. Simultaneous functionalization of βLG fibers by QD655 and QD525 allows for correlative AFM and two‐color super‐resolution fluorescence imaging of these hybrid materials. These experiments allow the combination of information about the topography and number of filaments that compose a fibril, as well as the emissive properties and nanoscale spatial distribution of the attached fluorophores. This study represents an important step forward in the characterization of multifunctionalized hybrid materials, a key challenge in nanoscience.  相似文献   
994.
995.
996.
This work deals with the sustainable biodiesel production from low-cost renewable feedstock (waste and non-edible oils) using a heterogeneous catalyst constituted by potassium loaded on an amorphous aluminum silicate naturally occurring as volcanic material (pumice). The main challenge to biodiesel production from low-quality oils (used oils and greases) is the high percentage of free fatty acids (FFAs) and water in the feedstock that causes undesirable side reactions. The catalytic materials studied were tested in the transesterification reaction when using low-quality oils containing a high proportion of free fatty acids (FFAs) and water. Results indicated that the amount of acid and basic sites on the catalytic surface increases upon increasing potassium loading in the catalyst, displaying better performance for biodiesel production. Indeed, the modification of the aluminum silicate substrate upon potassium incorporation results in a catalytic material containing both acidic and basic sites, which are responsible for both triglycerides transesterification and FFA esterification reactions. The studied catalyst not only showed good performance in the biodiesel production reaction but also good tolerance to FFA and water contained in the feedstock for biodiesel production. The catalytic material was microstructured by 3D printing in order to design a catalytic stirring system with high mechanical strength, efficient and reusable. The use of 3D printing in biofuel production is a novelty that brings good solutions for catalyst production.  相似文献   
997.
The companies’ needs to adopt changes in their way of production to maximize the environmental performance required by their stakeholders, and at the same time, to maximize their economic and market performance, have made them seek for environmental strategies and certifications. In this sense, the Cleaner Production and the Environmental Management System based on ISO 14001 have been, respectively, presented, since the main objective of this research is to identify and analyze Cleaner Production contributions to comply with ISO 14001 requirements. For such, a survey research has been carried out in Brazilian industrial companies certified by ISO 14001. We have identified the main performance factors by leading practices and variables of Cleaner Production that contribute to the compliance with the standard requirements by companies. Thus, it has been noted that Cleaner Production is an important strategy for the preparation of companies for certification as well as for improving their environmental performance.  相似文献   
998.
Life cycle assessment (LCA) is a powerful tool to support environmental informed decisions among product and process alternatives. LCA results reflect the process stage contributions to several environmental impacts, which should be made mutually comparable to help in the decision-making process. Aggregated environmental indexes enable the translation of this set of metrics into a one final score, by defining the attached weights to impacts. Weighting values reflect the corresponding relevance assigned to each environmental impact. Current weighing schemes are based on pre-articulation of preferences, without considering the specific features of the system under study. This paper presents a methodology that combines LCA methodology and linear programming optimisation to determine the environmental improvement actions that conduct to a more sustainable production. LCA was applied using the environmental sustainability assessment methodology to obtain two main indexes: natural resources (NR) and environmental burdens (EB). Normalised indexes were optimised to determine the optimal joint of weighting factors that lead to an optimised global Environmental Sustainability Index. The proposed methodology was applied to a food sector, in particular, to the anchovy canning industry in Cantabria Region (Northern Spain). By maximising the objective function composed of NR and EB variables, it is possible to find the optimal joint of weights that identify the best environmental sustainable options. This study proves that LCA can be applied in combination with linear programing tools as a part of the decision-making process in the development of more sustainable processes and products.  相似文献   
999.
While self‐assembled molecular building blocks could lead to many next‐generation functional organic nanomaterials, control over the thin‐film morphologies to yield monolithic sub‐5 nm patterns with 3D orientational control at macroscopic length scales remains a grand challenge. A series of photoresponsive hybrid oligo(dimethylsiloxane) liquid crystals that form periodic cylindrical nanostructures with periodicities between 3.8 and 5.1 nm is studied. The liquid crystals can be aligned in‐plane by exposure to actinic linearly polarized light and out‐of‐plane by exposure to actinic unpolarized light. The photoalignment is most efficient when performed just under the clearing point of the liquid crystal, at which the cylindrical nanostructures are reoriented within minutes. These results allow the generation of highly ordered sub‐5 nm patterns in thin films at macroscopic length scales, with control over the orientation in a noncontact fashion.  相似文献   
1000.
Copper–graphite composite materials in the range of 0–10 vol% of carbon phase were prepared from the mixture of copper and graphite powders by hot isostatic pressing. The microstructure, mechanical (tensile strength, elongation to fracture) and physical (electrical and thermal conductivity) properties of composite samples were investigated, and the cross-property connections were calculated. It was shown that electrical and thermal conductivity cross-property (Lorenz number) is almost constant and increases only slightly (no more than 10 % increase was observed). This implies that in the investigated composition range the Lorenz number of a copper–graphite composite system behaves according to Franz–Wiedemann law for pure metals at constant temperature. On the contrary, the conductivity to tensile strength cross-property connections showed significant linear increase (over 200 % in the investigated composition range) for both electrical conductivity and thermal conductivity of composite materials. The cross-property connections of conductivity to the elongation to fracture exhibit a nonlinear dependence on the volume fraction of graphite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号