首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   16篇
电工技术   4篇
化学工业   56篇
金属工艺   1篇
机械仪表   1篇
建筑科学   11篇
能源动力   12篇
轻工业   20篇
水利工程   2篇
无线电   17篇
一般工业技术   49篇
冶金工业   5篇
自动化技术   40篇
  2024年   1篇
  2023年   1篇
  2022年   4篇
  2021年   6篇
  2020年   6篇
  2019年   7篇
  2018年   6篇
  2017年   7篇
  2016年   13篇
  2015年   9篇
  2014年   7篇
  2013年   16篇
  2012年   15篇
  2011年   21篇
  2010年   15篇
  2009年   11篇
  2008年   6篇
  2007年   12篇
  2006年   3篇
  2005年   5篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   5篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有218条查询结果,搜索用时 46 毫秒
41.
42.
43.
The mineralization of flumequine, an antimicrobial agent belonging to the first generation of synthetic fluoroquinolones which is detected in natural waters, has been studied by electrochemical advanced oxidation processes (EAOPs) like electro-Fenton (EF) and photoelectro-Fenton (PEF) with UVA light. The experiments were performed in a cell containing a boron-doped diamond (BDD) anode and an air-diffusion cathode to generate H2O2 at constant current. The Fe2+ ion added to the medium increased the solubility of the drug by the formation of a complex of intense orange colour and also reacted with electrogenerated H2O2 to form hydroxyl radical from Fenton reaction. Oxidant hydroxyl radicals at the BDD surface were produced from water oxidation. A partial mineralization of flumequine in a solution near to saturation with optimum 2.0 mM Fe2+ at pH 3.0 was achieved by EF. The PEF process was more powerful, giving an almost total mineralization with 94-96% total organic carbon removal. Increasing current accelerated both treatments, but with decreasing mineralization current efficiency. Comparative treatments using a real wastewater matrix led to similar degradation degrees. The kinetics for flumequine decay always followed a pseudo-first-order reaction and its rate constant, similar for both EAOPs, raised with increasing current. Generated carboxylic acids like malonic, formic, oxalic and oxamic acids were quantified by ion-exclusion HPLC. Fe(III)-oxalate and Fe(III)-oxamate complexes were the most persistent by-products under EF conditions and their quicker photolysis by UVA light explains the higher oxidation power of PEF. The release of inorganic ions such as F, NO3 and in lesser extent NH4+ was followed by ionic chromatography.  相似文献   
44.
45.
2,3,5,6-Tetra(2-pyridyl)pyrazine (TPPZ) was employed as a ligand to prepare an iron(II) complex (Fe–TPPZ) that served as a precursor to synthesize carbon-supported catalysts (Fe–Nx/C) through heat-treatment at 600, 700, 800 and 900 °C under N2 atmosphere. Both the structure and composition of the synthesized Fe–Nx/C were analyzed by X-ray diffraction and energy-dispersive X-ray microanalysis, respectively. The rotating disk and ring-disk electrode measurements showed that these catalysts have strong ORR activity with an overall 4-electron transfer process through a (2 + 2)-electron transfer mechanism, which was assigned to the catalytic function of the Fe–Nx center. A study on the heat-treatment temperature on the ORR activity showed that 800 °C is the optimal temperature for the synthesized catalysts. Furthermore, the effect of both catalyst and Nafion® ionomer loadings in the catalyst layer on the corresponding ORR activity was also investigated. The kinetic parameters such as the chemical reaction rate between O2 and Fe–Nx/C (adduct formation reaction), the rate constant for the rate-determining step (RDS), and the electron numbers in the ORR, were obtained. The methanol tolerance of the catalyst was also tested. To validate the ORR activity, a membrane electrode assembly in which the cathode catalyst layer contained Fe–Nx/C was constructed and tested in a real fuel cell. The results obtained are encouraging when compared with similar non-noble catalysts.  相似文献   
46.
The electrical conduction properties of lateral and vertical silicon nanowires (SiNWs) were investigated using a conductive-probe atomic force microscopy (AFM). Horizontal SiNWs, which were synthesized by the in-plane solid-liquid-solid technique, are randomly deployed into an undoped hydrogenated amorphous silicon layer. Local current mapping shows that the wires have internal microstructures. The local current-voltage measurements on these horizontal wires reveal a power law behavior indicating several transport regimes based on space-charge limited conduction which can be assisted by traps in the high-bias regime (> 1 V). Vertical phosphorus-doped SiNWs were grown by chemical vapor deposition using a gold catalyst-driving vapor-liquid-solid process on higly n-type silicon substrates. The effect of phosphorus doping on the local contact resistance between the AFM tip and the SiNW was put in evidence, and the SiNWs resistivity was estimated.  相似文献   
47.
Methods from nonlinear dynamics (NLD) have shown new insights into heart rate (HR) variability changes under various physiological and pathological conditions, providing additional prognostic information and complementing traditional time- and frequency-domain analyses. In this review, some of the most prominent indices of nonlinear and fractal dynamics are summarized and their algorithmic implementations and applications in clinical trials are discussed. Several of those indices have been proven to be of diagnostic relevance or have contributed to risk stratification. In particular, techniques based on mono- and multifractal analyses and symbolic dynamics have been successfully applied to clinical studies. Further advances in HR variability analysis are expected through multidimensional and multivariate assessments. Today, the question is no longer about whether or not methods from NLD should be applied; however, it is relevant to ask which of the methods should be selected and under which basic and standardized conditions should they be applied.  相似文献   
48.
The biocatalytic synthesis and purification of O‐β‐D ‐monoglucuronide conjugates of hydroxytyrosol, tyrosol, homovanillic alcohol, and 3‐(4′‐hydroxyphenyl)propanol, using porcine liver microsomes, are described here. The glucuronides were synthesized, analyzed and separated by HPLC‐UV, identified by HPLC‐MS, and their structures unequivocally established by NMR techniques. The outcome of the glucuronidation reaction depends on the structure of the phenolic compounds. Thus, the glucuronidation of hydroxytyrosol, biocatalyzed with porcine liver microsomes, proceeded exclusively on the phenolic hydroxy groups. The regioselectivity was similar to that observed for human and rat liver microsomes, the 4′‐hydroxy position being more favorable than the 3′‐hydroxy one. In the case of tyrosol, homovanillic alcohol, and hydroxyphenylpropanol, two products were formed during microsomal glucuronidation: a major one, the phenolic O‐β‐D ‐glucuronidated derivative and, a minor one, the O‐β‐D ‐glucuronidated aliphatic alcohol.  相似文献   
49.
A key challenge in autonomous mobile manipulation is the ability to determine, in real time, how to safely execute complex tasks when placed in unknown or changing world. Addressing this issue for Intervention Autonomous Underwater Vehicles (I‐AUVs), operating in potentially unstructured environment is becoming essential. Our research focuses on using motion planning to increase the I‐AUVs autonomy, and on addressing three major challenges: (a) producing consistent deterministic trajectories, (b) addressing the high dimensionality of the system and its impact on the real‐time response, and (c) coordinating the motion between the floating vehicle and the arm. The latter challenge is of high importance to achieve the accuracy required for manipulation, especially considering the floating nature of the AUV and the control challenges that come with it. In this study, for the first time, we demonstrate experimental results performing manipulation in unknown environment. The Multirepresentation, Multiheuristic A* (MR‐MHA*) search‐based planner, previously tested only in simulation and in a known a priori environment, is now extended to control Girona500 I‐AUV performing a Valve‐Turning intervention in a water tank. To this aim, the AUV was upgraded with an in‐house‐developed laser scanner to gather three‐dimensional (3D) point clouds for building, in real time, an occupancy grid map (octomap) of the environment. The MR‐MHA* motion planner used this octomap to plan, in real time, collision‐free trajectories. To achieve the accuracy required to complete the task, a vision‐based navigation method was employed. In addition, to reinforce the safety, accounting for the localization uncertainty, a cost function was introduced to keep minimum clearance in the planning. Moreover a visual‐servoing method had to be implemented to complete the last step of the manipulation with the desired accuracy. Lastly, we further analyzed the approach performance from both loose‐coupling and clearance perspectives. Our results show the success and efficiency of the approach to meet the desired behavior, as well as the ability to adapt to unknown environments.  相似文献   
50.
Because of their intrinsic properties, carbon nanotubes (CNTs) have been suggested for biomedical applications. We studied the anti-adherent performance of two ultra-high-molecular-weight polyethylene (UHMWPE) surfaces which contains 3% multi-wall CNT variant (MWCNT): Nanocyl/UHMWPE and Arc/UHMWPE. These surfaces were obtained by hot pressure forming after mechanical mixture. Additional nanoindentation studies were performed and hardness and stiffness were determined. Mechanical properties of the MWCNT/UHMWPE composites were also compared to raw UHMWPE and correlated with their anti-adherent performance. Comparing with UHMWPE, Nanocyl/UHMWPE was the least adherent surface. Bacterial adherence was also significantly reduced in Arc/UHMWPE for four strains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号