首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   0篇
化学工业   9篇
金属工艺   4篇
机械仪表   3篇
建筑科学   1篇
轻工业   4篇
石油天然气   1篇
无线电   10篇
一般工业技术   18篇
冶金工业   19篇
原子能技术   1篇
自动化技术   11篇
  2023年   1篇
  2020年   1篇
  2018年   1篇
  2013年   5篇
  2012年   2篇
  2011年   4篇
  2010年   4篇
  2009年   5篇
  2008年   3篇
  2007年   2篇
  2006年   4篇
  2005年   6篇
  2004年   8篇
  2002年   2篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1995年   3篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1985年   2篇
  1980年   3篇
  1976年   1篇
排序方式: 共有81条查询结果,搜索用时 203 毫秒
21.
We recently discovered and reported a series of N‐alkyl‐isatin acylhydrazone derivatives that are potent cannabinoid receptor 2 (CB2) agonists. In an effort to improve the druglike properties of these compounds and to better understand and improve the treatment of neuropathic pain, we designed and synthesized a new series of 2,3‐dihydro‐1‐benzofuran derivatives bearing an asymmetric carbon atom that behave as potent selective CB2 agonists. We used a multidisciplinary medicinal chemistry approach with binding mode prediction through ligand‐steered modeling. Enantiomer separation and configuration assignment were carried out for the racemic mixture for the most selective compound, MDA7 (compound 18 ). It appeared that the S enantiomer, compound MDA104 (compound 33 ), was the active enantiomer. Compounds MDA42 (compound 19 ) and MDA39 (compound 30 ) were the most potent at CB2. MDA42 was tested in a model of neuropathic pain and exhibited activity in the same range as that of MDA7. Preliminary ADMET studies for MDA7 were performed and did not reveal any problems.  相似文献   
22.
LaFeTeO6 was prepared by solid state reaction of La2O3, Fe2O3 and TeO2 in 1:1:2 molar ratios and characterized by powder X-ray diffraction, thermogravimetry and magnetometry. The detailed crystal structure analysis was carried out by Rietveld refinement. LaFeTeO6 crystallizes in a trigonal lattice with unit cell parameters: a = 5.2049(1) Å and c = 10.3457(2) Å, V = 242.73(2) Å3. The crystal structure is built from sheets of the edge shared FeO6 and TeO6 octahedra stacked along the c-axis. These sheets are connected together by La3+ ions. Thermogravimetric analysis of the compound showed it to be thermally stable up to 1323 K and continuous loss of TeO2 was observed above 1323 K leading to the formation of LaFeO3. High temperature XRD studies revealed a normal expansion behavior of the compound. Temperature and field dependent magnetization of LaFeTeO6 showed paramagnetic behavior in the temperature range of 3-300 K. The effective magnetic moment per Fe3+ ion (5.14 μB) indicates the high spin d5 state of Fe3+ ion.  相似文献   
23.
Recent improvements in materials and processing technologies have dramatically increased the frequency range where ceramic thick film circuits can be utilized. Coupled with inherent advantages of thick film technology viz. low manufacturing cost, multilayering capability and relative insensitivity to substrate surface characteristics, such improvements have resulted in circuits that are penetrating the domain which was previously reserved to thin film technology. In view of newer developments in modern electronics, there is still ample scope for the development of new materials and processes especially in thick film technology. In thick films, conductors play a major role and silver–palladium is one of the important conductor materials in microelectronic circuits. Efforts are made in this work towards the development of suitable silver–palladium thick film conductors from the standpoint of microwave applications. The properties such as surface microstructure, sheet resistance, adhesion and microwave performance of the indigenously developed silver–palladium paste compositions is reported here. Highly porous surface structure, low adhesion and low characteristic impedance of thick film microstrip are observed for pastes with high palladium concentration.  相似文献   
24.
Part orientation is an important parameter in the planning of a Rapid Prototyping (RP) process as it directly governs productivity, part quality and cost of manufacturing. This paper reports the design and implementation of a system for obtaining optimum orientation of a part for RP. Developed in a modular fashion, the system comprises of functional modules for CAD model preprocessing, shelling (hollowing), part orientation and optimization. CAD part model in STL format is an input to the system. The oriented CAD model is sliced and hollowed with desired shell thickness. Genetic algorithm based strategy is used to obtain optimum orientation of the parts for RP process. The objective criteria for optimization is considered to be a weighted average of the performance measures such as build time, part quality and the material used in the hollowed model. The developed system has been tested with several case studies considering SLS process.  相似文献   
25.
Recent improvements in materials and processing technologies have dramatically increased the frequency range where ceramic thick film circuits can be utilized. Coupled with inherent advantages of thick film technology viz. low manufacturing cost, multilayering capability and relative insensitivity to substrate surface characteristics, such improvements have resulted in circuits that are penetrating the domain which was previously reserved to thin film technology. In view of newer developments in modern electronics, there is still ample scope for the development of new materials and processes especially in thick film technology. In thick films, conductors play a major role and silver–palladium is one of the important conductor materials in microelectronic circuits. Efforts are made in this work towards the development of suitable silver–palladium thick film conductors from the standpoint of microwave applications. The properties such as surface microstructure, sheet resistance, adhesion and microwave performance of the indigenously developed silver–palladium paste compositions is reported here. Highly porous surface structure, low adhesion and low characteristic impedance of thick film microstrip are observed for pastes with high palladium concentration.  相似文献   
26.
The propagation of optically excited picosecond electrical pulses on coplanar striplines is analyzed. A full-wave analysis method that includes dispersion and losses over terahertz bandwidths is outlined. Results of the full-wave analysis are interpreted in terms of the underlying physical phenomena. The full-wave analysis reveals the existence of peaks in the dispersion curve of the coplanar stripline. These are interpreted in terms of the onset and coupling of the substrate modes to the transmission line mode. Results of the full-wave analysis are in good agreement with those obtained by established theory. Pulse propagation is simulated using the dispersion and loss data obtained from the analysis and accounts for all the relevant mechanisms. Results of simulations are compared with previously published experimental data for normal as well as superconducting lines. It is demonstrated that the superconducting phenomena are not dominant, whereas modal dispersion and substrate losses dominate the evolution of the output pulse and must be included for accurate modeling of pulse propagation on coplanar striplines  相似文献   
27.
Outbreaks of enterohemorrhagic Escherichia coli O157:H7 infections associated with lettuce and other leaf crops have occurred with increasing frequency in recent years. Contaminated manure and polluted irrigation water are probable vehicles for the pathogen in many outbreaks. In this study, the occurrence and persistence of E. coli O157:H7 in soil fertilized with contaminated poultry or bovine manure composts or treated with contaminated irrigation water and on lettuce and parsley grown on these soils under natural environmental conditions was determined. Twenty-five plots, each 1.8 by 4.6 m, were used for each crop, with five treatments (one without compost, three with each of the three composts, and one without compost but treated with contaminated water) and five replication plots for each treatment. Three different types of compost, PM-5 (poultry manure compost), 338 (dairy manure compost), and NVIRO-4 (alkaline-stabilized dairy manure compost), and irrigation water were inoculated with an avirulent strain of E. coli O157:H7. Pathogen concentrations were 10(7) CFU/g of compost and 10(5) CFU/ml of water. Contaminated compost was applied to soil in the field as a strip at 4.5 metric tons per hectare on the day before lettuce and parsley seedlings were transplanted in late October 2002. Contaminated irrigation water was applied only once on the plants as a treatment in five plots for each crop at the rate of 2 liters per plot 3 weeks after the seedlings were transplanted. E. coli O157:H7 persisted for 154 to 217 days in soils amended with contaminated composts and was detected on lettuce and parsley for up to 77 and 177 days, respectively, after seedlings were planted. Very little difference was observed in E. coli O157:H7 persistence based on compost type alone. E. coli O157:H7 persisted longer (by > 60 days) in soil covered with parsley plants than in soil from lettuce plots, which were bare after lettuce was harvested. In all cases, E. coli O157:H7 in soil, regardless of source or crop type, persisted for > 5 months after application of contaminated compost or irrigation water.  相似文献   
28.
The International Technology Roadmap for Semiconductors (ITRS) identifies two main challenges associated with the testing of manufactured ICs. First, the increase in complexity of semiconductor manufacturing process, physical properties of new materials, and the constraints imposed by resolution of lithography techniques etc., give rise to more complex failure mechanisms and hard-to-model defects that can no longer be abstracted using traditional fault models. Majority of defects, in today's technology, include resistive bridging and open defects with diverse electrical characteristics. Consequently, conventional fault models, and tools based on these models are becoming inadequate in addressing defects resulting from new failure mechanisms. Second, the defect detection resolution of main-stream IDDQ testing is challenged by significant elevation in off-state quiescent current and process variability in newer technologies. Overcoming these challenges demands innovative test solutions that are based on realistic fault models capable of targeting real defects and thus, providing high defect coverage. In prior works power supply transient current or iDDT testing has been shown to detect resistive bridging and open defects. The ability of transient currents to detect resistive opens and their insensitivity (virtually) to increase in static leakage current make iDDT testing all the more attractive. However, in order to integrate iDDT based methods into production test flows, it is necessary to develop a fault simulation strategy to assess the defect detection capability of test patterns and facilitate the ATPG process. The analog nature of the test observable, i.e., iDDT signals, entail compute intensive transient simulations that are prohibitive. In this work, we propose a practical fault simulation model that partitions the task of simulating the DUT (device under test) into linear and non-linear components, comprising of power/ground-grid and core-logic, respectively. Using divide-and-conquer strategy, this model replaces the transient simulations of power/ground-grid with simple convolution operations utilizing its impulse response characteristics. We propose a path isolation strategy for core-logic as a means of reducing the computational complexity involved in deriving iDDT signals in the non-linear portion. The methodology based on impulse response functions and isolated path simulation, can enable iDDT fault simulation without having to simulate the entire DUT. To our knowledge, no practical technique exists to perform fault simulation for iDDT based methods. The proposed fault simulation model offers two main advantages, first, it allows fault induction at geometric or layout level, thus providing a realistic representation of physical defects, and second, the current/voltage profile of power/ground-grid, derived for iDDT fault simulation, can be used to perform accurate timing verification of logic circuit, thus facilitating design verification. In summary, the proposed fault simulation framework not only enables the assessment of defect detection capabilities of iDDT test methodologies, but also establishes a platform for performing defect-based testing on practical designs.  相似文献   
29.
The sub-solidus phase relations in Sr-Th-P-O quaternary system were determined at 1223 K in air. To confirm the formation and stability of reported phases, ternary and quaternary compounds in Sr-Th-O, Sr-P-O, Th-P-O and Sr-Th-P-O systems were synthesized by solid state reactions of SrCO3, ThO2 and NH4H2PO4 in desired molar proportions at 1223 K. A pseudo-ternary phase diagram of SrO-ThO2-P2O5 system was drawn on the basis of the phase analysis of various phase mixtures and phase fields were established by powder X-ray diffraction. In the phase diagram, three quaternary compounds SrTh(PO4)2, SrTh4(PO4)6 and Sr7Th(PO4)6 were identified. When heated in air at 1673 K, these compounds decompose to ThO2. Structures of SrTh(PO4)2, SrTh4(PO4)6 and Sr7Th(PO4)6 were derived from X-ray powder data using the Rietveld refinement method. Thermal expansion behaviors of SrTh(PO4)2, SrTh4(PO4)6 and Sr7Th(PO4)6 were investigated using high-temperature X-ray diffraction in the temperature range of 298-1273 K.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号