首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   938篇
  免费   28篇
  国内免费   3篇
电工技术   16篇
化学工业   190篇
金属工艺   29篇
机械仪表   26篇
建筑科学   14篇
矿业工程   3篇
能源动力   41篇
轻工业   73篇
水利工程   7篇
石油天然气   1篇
无线电   73篇
一般工业技术   258篇
冶金工业   123篇
原子能技术   3篇
自动化技术   112篇
  2024年   5篇
  2023年   8篇
  2022年   22篇
  2021年   40篇
  2020年   39篇
  2019年   41篇
  2018年   36篇
  2017年   30篇
  2016年   25篇
  2015年   26篇
  2014年   34篇
  2013年   62篇
  2012年   28篇
  2011年   39篇
  2010年   44篇
  2009年   40篇
  2008年   30篇
  2007年   27篇
  2006年   17篇
  2005年   19篇
  2004年   11篇
  2003年   18篇
  2002年   20篇
  2001年   14篇
  2000年   11篇
  1999年   10篇
  1998年   34篇
  1997年   22篇
  1996年   16篇
  1995年   8篇
  1994年   9篇
  1993年   16篇
  1992年   7篇
  1990年   10篇
  1989年   10篇
  1988年   9篇
  1987年   10篇
  1986年   6篇
  1985年   20篇
  1984年   10篇
  1983年   9篇
  1982年   9篇
  1981年   10篇
  1980年   15篇
  1979年   9篇
  1977年   3篇
  1976年   11篇
  1975年   3篇
  1974年   3篇
  1966年   2篇
排序方式: 共有969条查询结果,搜索用时 171 毫秒
31.

Direct laser writing techniques are suitable for the high precision-patterning of 2D and 3D micro/nanostructures, featuring a variety of geometries and materials. Here, we demonstrated the use of laser-induced forward transfer with fs-pulses (fs-LIFT) to selectively transfer graphene oxide and poly(p-phenylene vinylene) patterns onto polymeric microstructures, fabricated by two-photon polymerization. The influence of different fs-LIFT experimental parameters on the width and height of the printed patterns was investigated. Upon optimum fs-LIFT parameters, we achieved homogeneous printed areas of both materials onto specific regions of the microstructures. Raman spectroscopy confirmed that fs-LIFT does not change the donor material upon transfer. Overall, this work demonstrates a promising strategy with precise printing capabilities, thus opening new opportunities for the development of photonic and optoelectronic devices.

  相似文献   
32.
Novel composite membranes were prepared using imidazolium type aprotic ionic liquids and sulfonated poly (ether ketone) (SPEK) as polymer matrix by solution casting process. All the prepared membranes were characterized for their thermal stability, mechanical properties, ion exchange capacity, proton conductivity and leaching out of ionic liquids in presence of water. Ionic liquid based membranes were more flexible than neat SPEK membrane due to the plasticization effect of ionic liquids. The interactions and compatibility occurring among components were investigated by vibration spectroscopy (FTIR ATR) and scanning electron microscopy respectively. The thermal stability of composite membranes was higher than unmodified membranes. The ion conductivity of composite membranes under anhydrous conditions was found to be dependent on temperature, type and concentration of ionic liquid in SPEK matrix. Ion conductivities of composite membranes under anhydrous condition were found to be up to two orders (∼100 times) higher than neat SPEK membrane and it was found to be ∼5 mS/cm at 140 °C for SPEK/OTf-70. These composite membranes can be successfully operated at temperatures ranging from 40 °C to 140 °C under anhydrous conditions.  相似文献   
33.
A Geographical Information System (GIS) integration tool is proposed to demarcate the groundwater potential zone in a soft rock area using seven hydrogeologic themes: lithology, geomorphology, soil, net recharge, drainage density, slope and surface water bodies. Except for net recharge and slope, the other five themes are derived from remote sensing data. IRS-1B LISS-II data was used for a 631 km2 area in Midnapur District, West Bengal, India. While slope was calculated using topographic sheets, net recharge was obtained from annual water table fluctuation data. Each feature of all the thematic maps was evaluated according to its relative importance in the prediction of groundwater potential. The evolved GIS-based model of the study area was found to be in strong agreement with available borehole and pumping test data.  相似文献   
34.
The lithium extraction from a lepidolite concentrate using roasting, followed by water leaching, was studied. Several alternative additives were initially tested. The use of sodium and calcium sulfates as additives was evaluated in more detail. The influence of some process variables, namely the roasting time, roasting temperature and the additive/concentrate mass ratio, was studied applying a design of experiments. The lithium extraction was modelled and the fitted and validated model was used to optimize the process response. The increase in the additive/concentrate mass ratio, roasting time and temperature seems to result in solid state reactions and transformations that lead to phase, morphological and particle size distribution modifications, which were assessed by XRPD, SEM, and particle size analyses. In this process, lithium sodium sulfate formation constitutes a crucial step enabling the Li water leaching. High lithium extractions were estimated for several combinations of factors. At 850°C, lithium extractions over 90% are obtained when the roasting time is above 1.90 hour and the additive/concentrate mass ratios are over 0.77. An increase in the temperature to 875°C also leads to lithium extractions over 90% for a roasting time of 1 hour and an additive/concentrate mass ratio of 0.60.  相似文献   
35.
A novel polymer cream was applied to brick and mortar in an attempt to reduce water absorption and to improve thermal insulation for household heating energy saving. Tests were carried out on surface energy, water contact angle, thermal conductivity and sorptivity of brick and mortar with and without cream treatment. A model house was built and a heating and monitoring system was developed to quantitatively evaluate the heating energy consumption in different conditions before and after cream treatment. It was found out that cream treatment can successfully impart good water repellence and enhanced the thermal insulation of the brick and mortar. The results from contact angle and surface energy measurements showed that the materials became highly hydrophobic. Experimental results from the model house showed approximately 9% heating energy consumption reduction in dry conditions and approximately 50% in wet conditions. In addition, the internal humidity typically was reduced to almost 1/3 of that of the control. It has been demonstrated that the novel cream treatment on masonry buildings can help reduce damp problems and save household heating energy consumption which can make a significant contribution to addressing social, environmental, ecological and economic problems resulting from climate change and global warming.  相似文献   
36.
The non-isothermal crystallization kinetics of pure PP and PP/SEBS-g-MA blends up to volume fraction, Φ d (0–0.50) was studied by differential scanning calorimetry at four different cooling rates. Crystallization parameters were analyzed by Ozawa and Liu models. The Ozawa model fits in the PP/SEBS-g-MA blends and indicates the effect of SEBS-g-MA copolymer on the crystallization process of polypropylene. Augis–Bennet model has been used to calculate activation energy, ?E, during non-isothermal crystallization process. The value of ?E decreased with SEBS-g-MA due to flexibility of SEBS-g-MA by which movements of chains of PP become easier.  相似文献   
37.
Hemp fibre‐reinforced polycaprolactone (HFRP) composite has inherent good mechanical properties and benefits which include remarkably high specific strength and modulus, low density, and renewability. No doubt, these properties have attracted wider applications of HFRP composite in engineering applications. This paper presents an investigation on the influence of drilling parameters and fibre aspect ratios, AR (0, 19, 26, 30, and 38) on delamination damage factor and surface roughness of HFRP composite laminates utilising high speed steel twist drills under dry machining condition. Taguchi's technique was used in the design of experiment. The results obtained show that increase in cutting speed reduces delamination factor and surface roughness of drilled holes, whereas increase in feed rate causes increase in both delamination factor and surface roughness. Feed rate and cutting speed had the greatest influence on delamination and surface roughness respectively when compared with aspect ratio, while an increase in fibre aspect ratios leads to a significant increase in both delamination factor and surface roughness. The optimum results occurred at cutting speed and feed rate (drilling parameters) of 20 mm/min and 0.10 mm/rev, respectively, when drilling sample of AR 19. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42879.  相似文献   
38.
Dense silicon carbide (SiC) ceramics were prepared with 0, 10, 30 or 50 wt% WC particles by hot pressing powder mixtures of SiC, WC and oxide additives at 1800 °C for 1 h under a pressure of 40 MPa in an Ar atmosphere. Effects of alumina or SiC erodent particles and the WC content on the erosion performance of sintered SiC–WC composites were assessed. Microstructures of the sintered composites consisted of WC particles distributed in the equi-axed grain structure of SiC. Fracture surfaces showed a mixed mode of fracture, with a large extent of transgranular fracture observed in SiC ceramics prepared with 30 wt% WC. Crack bridging by WC enhanced toughening of the SiC ceramics. A maximum fracture toughness of 6.7 MPa*m1/2 was observed for the SiC ceramics with 50 wt% WC, whereas a high hardness of 26 GPa was obtained for the SiC ceramics with 30 wt% WC. When eroded at normal incidence, two orders of magnitude less erosion occurred when SiC–WC composites were eroded by alumina particles than that eroded by SiC particles. The erosion rate of the composites increased with increasing angle of SiC particle impingement from 30° to 90°, and decreased with WC reinforcement up to 30 wt%. A minimum erosion wear rate of 6.6 mm3/kg was obtained for SiC–30 wt% WC composites. Effects of mechanical properties and microstructure on erosion of the sintered SiC–WC composites are discussed, and the dominant wear mechanisms are also elucidated.  相似文献   
39.
Unidirectional (UD) hybrid laminates based on glass fibers (GF) and high performance polyethylene fibers (PEF) were prepared with partially polymerized methyl methacrylate (MMA) at room temperature followed by heating at 55°C (well below the softening point of PEF) for 2 h. Izod impact strength of the composites was then measured. An interesting observation of the study was the change in impact strength that was largely dependent on the position of GF and PEF ply/plies present within the hybrid laminates. When the ply/plies of PEF were at the impacted surface, the impact strength showed a higher value than that of the case when GF ply/plies were at the impacted surface of the hybrid laminates. © 1996 John Wiley & Sons, Inc.  相似文献   
40.
The use of toxic petroleum-based heavy oils is common in industrial processes. The cleaning of machines, equipment, and other surface covered in these oils is achieved with expensive products that are often also toxic and harmful to both the health of workers and the environment. The present paper proposes the development of a sustainable biodetergent made from plant-based materials. Tests were performed to determine the properties of the biodetergent in terms of its surfactant and emulsifying capacities, stability, toxicity, and the removal of heavy oil from glass plates and metallic surfaces. The formulation was composed of a natural solvent (cottonseed oil), a plant-based surfactant agent (saponin), and two natural stabilizers (carboxymethylcellulose and glycerine). The formulation was stable, nontoxic, and highly efficient, removing 100% of the heavy oil from glass and metallic surfaces. This solution developed in this study could be used in diverse industries with the need to clean machines and parts encrusted with oil and grease as well as the cleaning of floors covered with petroleum-based residues. A preliminary analysis of the economic feasibility of using the detergent was carried out at a Brazilian power plant. Besides the reduction in environmental impact due to the use of a nontoxic, biodegradable product as well as the reduction in health risks to workers associated with toxic cleaning products, this new product can have a considerable impact on the market as an environmentally friendly solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号