首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24218篇
  免费   1006篇
  国内免费   150篇
电工技术   441篇
综合类   38篇
化学工业   5232篇
金属工艺   710篇
机械仪表   718篇
建筑科学   505篇
矿业工程   74篇
能源动力   1590篇
轻工业   1435篇
水利工程   166篇
石油天然气   102篇
武器工业   1篇
无线电   3051篇
一般工业技术   5310篇
冶金工业   2295篇
原子能技术   213篇
自动化技术   3493篇
  2024年   107篇
  2023年   458篇
  2022年   1070篇
  2021年   1265篇
  2020年   1001篇
  2019年   1037篇
  2018年   1332篇
  2017年   1069篇
  2016年   1028篇
  2015年   672篇
  2014年   952篇
  2013年   1838篇
  2012年   1070篇
  2011年   1305篇
  2010年   1056篇
  2009年   997篇
  2008年   925篇
  2007年   746篇
  2006年   643篇
  2005年   541篇
  2004年   416篇
  2003年   369篇
  2002年   298篇
  2001年   287篇
  2000年   253篇
  1999年   265篇
  1998年   508篇
  1997年   398篇
  1996年   330篇
  1995年   247篇
  1994年   266篇
  1993年   253篇
  1992年   187篇
  1991年   194篇
  1990年   160篇
  1989年   140篇
  1988年   140篇
  1987年   143篇
  1986年   127篇
  1985年   154篇
  1984年   131篇
  1983年   119篇
  1982年   99篇
  1981年   119篇
  1980年   88篇
  1979年   69篇
  1978年   64篇
  1977年   70篇
  1976年   81篇
  1973年   44篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
861.
Through-silicon vias (TSVs) have provided an attractive solution for three-dimensional (3D) integrated devices and circuit technologies with reduced parasitic losses and power dissipation, higher input-output (I/O) density and improved system performance. This paper investigates the propagation delay and average power dissipation of single-walled carbon nanotube bundled TSVs having different via radius and height. Depending on the physical configuration, a comprehensive and accurate analytical model of CNT bundled TSV is employed to represent the via (vertical interconnect access) line of a driver-TSV-load (DTL) system. The via radius and height are used to estimate the bundle aspect ratio (AR) and the cross-sectional area. For a fixed via height, the delay and the power dissipation are reduced up to 96.2% using a SWCNT bundled TSV with AR = 300 : 1 in comparison to AR = 6 : 1.  相似文献   
862.
The electrical behavior of strontium titanate borosilicate glass ceramics (SrO.TiO2- 2SiO2.B2O3) with additives K2O, La2O3, CoO and Nb2O5 was studied by using Impedance Spectroscopy as a function of temperature and composition. An equivalent circuit model having three parallel RC's connected in series with a capacitor C4 could represent the data well. By comparing the complex modulus plots with simulated ones and looking at the values of the time constants these RC's were attributed to represent crystalline, glassy and glass-crystal interface regions of the glass- ceramic whereas C4 represented the glass-ceramic sample and contact electrode interface. When the glass ceramic sample contained only SrTiO3 crystalline phase and the remaining glassy matrix, the interface capacitance showed an Arrhenius type of nature with an activation energy (0.11 ± 0.04) eV and when the glass- ceramic sample contained number of crystalline phases no clear cut trend appeared. These findings are useful in selecting suitable electrodes for applications as well as in deciding upon experimental techniques for measurement of dielectric constants of materials.  相似文献   
863.
864.
An attempt was made to individually analyze a germplasm collection of 54 indigenous Indian sesame cultivars for fatty acid and lignan composition of their seed oil by gas chromatography and high performance liquid chromatography, respectively. The entries varied in their fatty acid and lignan composition. The mean percentage contents of palmitic, stearic, oleic, linoleic and α‐linolenic acids ranged between 10–22, 5–10, 38–50, 18–43 and less than 1 whereas sesamol, sesamin and sesamolin scored between 3–37, 27–67, 20–59 of the total percentage of lignan, respectively. The highest percentage of α‐linolenic acid (ALA) was obtained in Var9 (1.3 % of the total fatty acids). Among the lignans, high sesamin content is considered to be significant, particularly in terms of long shelf life and nutraceutical value of sesame seed oil. The study has broadened our understanding related to differential biochemical composition of the rich sesame germplasms, thereby providing us with a useful groundwork for identifying potential targets and suitable cultivars for genetic engineering approaches to be undertaken in order to improve the nutritional quality of sesame oil, which in turn would be beneficial towards human health.  相似文献   
865.
Renewable energy sources such as wind energy—together with energy-efficient technologies—are essential to meet global energy demands and address climate change. Fiber-reinforced polymer composites, with their superior structural properties (e.g., high stiffness-to-weight) that allow lightweight and robust designs, play a significant part in the design and manufacture of modern wind turbines, especially turbine blades, for demanding service conditions. However, with the current global growth in onshore/offshore wind farm installations (with total global capacity of ~282 GW by the end of 2012) and trend in wind turbine design (~7–8 MW turbine capacity with ~70–80 m blade length for offshore installations), one of the challenges that the wind energy industry faces with composite turbine blades is the aspect of structural maintenance and repair. Although wind turbines are typically designed for a service life of about 20 years, robust structural maintenance and repair procedures are essential to ensure the structural integrity of wind turbines and prevent catastrophic failures. Wind blades are damaged due to demanding mechanical loads (e.g., static and fatigue), environmental conditions (e.g., temperature and humidity) and also manufacturing defects. If material damage is not extensive, structural repair is the only viable option to restore strength since replacing the entire blade is not cost-effective, especially for larger blades. Composite repairs (e.g., external and scarf patches) can be used to restore damaged laminate/sandwich regions in wind blades. With composite materials in the spar (~30–80 mm thick glass/carbon fiber laminates) and aerodynamic shells (sandwich sections with thin glass fiber skins and thick foam/wood as core), it is important to have reliable and cost-effective structural repair procedures to restore damaged wind blades. However, compared to aerospace bonded repairs, structural repair procedures in wind blades are not as well developed and thus face several challenges. In this regard, the area of composite repair in wind blades is broadly reviewed to provide an overview as well as identify associated challenges.  相似文献   
866.
867.
The structural, electronic, and elastic properties of pristine and carbon‐doped boron suboxide (B6O) are calculated using density functional theory. The results indicate that it is energetically preferable for a single carbon atom to substitute into an oxygen site rather than a boron site. The lattice parameters and cell volume increase to relieve the residual stress created by the carbon substitution. The interstitial position is not favorable for a single atom substitution. However, if two carbon atoms substitute for two neighboring oxygen atoms, then it becomes energetically favorable to dope an interstitial oxygen, boron, or carbon atom along the C–C chain. If the interstitial dopant is either boron or carbon, a local B4C‐like structure with either a C–B–C or C–C–C chain is created within the boron suboxide unit cell. The resulting structure shows improvements in the bulk modulus at the expense of the shear and Young's moduli. The moduli further improve if an additional carbon is substituted within a polar or equatorial site of the neighboring B12 icosahedron. Based on these calculations, we conclude that carbon doping can either harden or soften B6O depending on the manner in which the substitutions are populated. Furthermore, as B6O samples are often oxygen deficient, C doping can occupy such sites and improve the elastic properties.  相似文献   
868.
We report a detailed study on the synthesis of ultra-small (1–10 nm) colloidal silicon nanoparticles (Si NPs) by ablating porous silicon (pSi) in acetone using femtosecond laser pulses. Porous silicon is considered as a target material for ablation because it contains a large number of light emitting silicon nanoparticles. The pSi samples were prepared by anodic etching of silicon in aqueous HF solution for different etching current densities. Transmission electron microscope measurements confirmed the successful formation of well-isolated spherical silicon nanoparticles. The average size of spherical NPs were estimated to be ~7.6, ~7, and ~6 nm when anodic etching current densities of 5, 10, and 20 mA/cm2 were used respectively for preparing pSi targets. The crystallinity of these Si NPs was confirmed by selective area electron diffraction and Raman spectroscopy measurements. The observed blue shift in the absorption and emission spectra are attributed to reduction in the average particle size with increase in etching current density. These Si NPs may be useful for fabricating low-dimensional microelectronic compatible photonic devices.  相似文献   
869.
The data acquired by magnetic resonance (MR) imaging system are inherently degraded by noise that has its origin in the thermal Brownian motion of electrons. Denoising can enhance the quality (by improving the SNR) of the acquired MR image, which is important for both visual analysis and other post processing operations. Recent works on maximum likelihood (ML) based denoising shows that ML methods are very effective in denoising MR images and has an edge over the other state‐of‐the‐art methods for MRI denoising. Among the ML based approaches, the Nonlocal maximum likelihood (NLML) method is commonly used. In the conventional NLML method, the samples for the ML estimation of the unknown true pixel are chosen in a nonlocal fashion based on the intensity similarity of the pixel neighborhoods. Euclidean distance is generally used to measure this similarity. It has been recently shown that computing similarity measure is more robust in discrete cosine transform (DCT) subspace, compared with Euclidean image subspace. Motivated by this observation, we integrated DCT into NLML to produce an improved MRI filtration process. Other than improving the SNR, the time complexity of the conventional NLML can also be significantly reduced through the proposed approach. On synthetic MR brain image, an average improvement of 5% in PSNR and 86%reduction in execution time is achieved with a search window size of 91 × 91 after incorporating the improvements in the existing NLML method. On an experimental kiwi fruit image an improvement of 10% in PSNR is achieved. We did experiments on both simulated and real data sets to validate and to demonstrate the effectiveness of the proposed method. © 2015 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 25, 256–264, 2015  相似文献   
870.
We report investigations on polycrystalline LaCo1?x Al x O3 (x = 0–0.9) bulk samples. The solid state synthesized samples showed a coexistence of rhombohedral and monoclinic phases in the intermediate concentrations (0.2 ≤ x ≤ 0.5) and pure rhombohedral phase otherwise. The observed effect of Al doping on dc transport has been analysed on the basis of small polaron hopping mechanism. The magnetisation results presented give evidence of weak ferromagnetism and anomalous temperature dependence of coercivity which we associate to the canting of the localised high-spin Co(III) and anti-symmetric exchange interactions at low temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号