首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120571篇
  免费   3834篇
  国内免费   1862篇
电工技术   2689篇
技术理论   2篇
综合类   4485篇
化学工业   17653篇
金属工艺   6847篇
机械仪表   5262篇
建筑科学   5087篇
矿业工程   1477篇
能源动力   1977篇
轻工业   5827篇
水利工程   1785篇
石油天然气   2977篇
武器工业   201篇
无线电   13742篇
一般工业技术   20862篇
冶金工业   4689篇
原子能技术   658篇
自动化技术   30047篇
  2024年   142篇
  2023年   628篇
  2022年   943篇
  2021年   1406篇
  2020年   1073篇
  2019年   891篇
  2018年   15251篇
  2017年   14365篇
  2016年   10882篇
  2015年   1946篇
  2014年   1947篇
  2013年   2396篇
  2012年   5263篇
  2011年   11772篇
  2010年   10395篇
  2009年   7518篇
  2008年   8738篇
  2007年   9729篇
  2006年   2149篇
  2005年   2973篇
  2004年   2328篇
  2003年   2209篇
  2002年   1553篇
  2001年   967篇
  2000年   1086篇
  1999年   1166篇
  1998年   1008篇
  1997年   865篇
  1996年   872篇
  1995年   643篇
  1994年   560篇
  1993年   391篇
  1992年   355篇
  1991年   281篇
  1990年   196篇
  1989年   169篇
  1988年   146篇
  1987年   105篇
  1986年   78篇
  1985年   58篇
  1984年   57篇
  1982年   37篇
  1968年   45篇
  1967年   36篇
  1966年   44篇
  1965年   46篇
  1958年   37篇
  1957年   36篇
  1955年   63篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
991.
The new hybrid elements are proposed by combing modified Hermitian wavelet elements with ANASYS elements. Then hybrid elements are substituted into finite element formulations to solve the load identification. Transfer matrix can be constructed by using the inverse Newmark algorithm and hybrid finite element method. Loads can obtain through the responses and the transfer matrix. Load identification law was studied under different excitation cases in rod and Timoshenko beam. Regularization method is adopted to solve ill-posed inverse problem of load identification. Compared with ANSYS results, hybrid elements and HCSWI elements can accurately identify the applied load. Numerical results show that the algorithm of hybrid elements is effective. The accuracy of hybrid elements and HCSWI elements can be verified by comparing the load identification result of ANASYS elements with the experiment data. Hermitian wavelet finite element methods have high accuracy advantage but it is difficult to apply the engineering practice. In practical engineering, complex structure can be analyzed by using the hybrid finite element methods which can be obtained the high accuracy in the crucial component.  相似文献   
992.
In this paper, the platoon control problem of autonomous vehicles in highway is studied. Since the autonomous vehicles have the characteristics of nonlinearities, external disturbances and strong coupling, a novel adaptive fuzzy sliding coordinated control system is constructed to supervise the longitudinal and lateral motions of autonomous vehicles, in which the fuzzy system is employed to approximate the unknown nonlinear functions. Due to the low sensitivity to disturbances and plant parameter variations, the proposed control approach is an efficient way to handle with the complex dynamic plants operating under un-certainty conditions. The asymptotic stability of adaptive coordinated platoon close-loop control system is verified based on the Lyapunov stability theory. The results indicate that the presented adaptive coordinated platoon control approach can accurately achieve the tracking performance and ensures the stability and riding comfort of autonomous vehicles in a platoon. Finally, simulation test is exploited to demonstrate the effectiveness of the proposed control approach.  相似文献   
993.
Air quality has increasingly been a great concern all over the world, and the good command of indoor and outdoor air qualities is of benefit to the air pollution alleviation by various measures. In this work, the indoor and outdoor particle concentration distributions of a typical meeting room during the haze and clear-sky days were measured. The results show that the mass concentrations of the indoor and outdoor PM1, PM2.5, PM10 in heavy haze days are 114±1.8, 135.5±3.2, 161.7±12.8 μg/m3 and 146.4±8.4, 192.3±10.2, 431.4±34.8 μg/m3 respectively, corresponding to 39.3±1.5, 58.5±2.5, 127.9±10.5 μg/m3 and 54.5±4.0, 77.8±6.0, 173.4±21.6 μg/m3 in clear-sky days. Both in the haze and clear-sky days, the number distribution of particles reaches its peak value at the diameter of 0.25 μm, but the particle number concentration in the haze day is two times greater than the clear-sky day. The indoor particle concentration is not uniform with the peak value at the corner, which can be effectively alleviated by the air cleaner. The in-situ measurements of particle concentrations in a meeting room are helpful for the indoor air quality control.  相似文献   
994.
Uncertainties existing in the acoustic metamaterial may strongly affect its unusual properties. Aiming at this actuality, the interval model is introduced to treat with uncertainties existing in the acoustic metamaterial with Helmholtz resonators. Frequency intervals in which the sound intensity transmission coefficients are certainly less than the required value and the effective bulk moduli are certainly negative are defined as conservative approximations. Frequency intervals in which the sound intensity transmission coefficients may be less than the required value and the effective bulk moduli may be negative are defined as unsafe approximations. The proportion of the conservative approximation and the unsafe approximation is defined as an approximate precision. Based on the quantification of uncertainties of the sound intensity transmission coefficients and the negative effective bulk moduli, an optimization model for the interval acoustic metamaterial with Helmholtz resonators is constructed. Numerical results showed that even suffering from effects of interval parameters, unusual properties of the optimized acoustic metamaterial (such as the bandgap of the sound transmission and the negative effective bulk modulus) could be improved.  相似文献   
995.
Interaction between ultralow frequency (ULF) waves and charged particles plays an important role in the acceleration of particles in the Van Allen radiation belts. The strong wave-particle interaction predicts an energy-dependent observational signature of particle flux variations during different stages of the ULF wave evolution. In this paper, we find that the energetic particle data newly available from an IGSO spacecraft are quite consistent with theoretical predictions, which enables the application of a best-fit procedure to quantitatively extract key parameters of the ULF waves from the particle data. The general agreement between observations and the best-fit results validates the scenario of wave-particle drift resonance within the entire ULF life span, and provides a new technique to understand the ULF wave characteristics in the absence of electromagnetic field data. We also examine the minor differences between observations and the best-fit results, and propose that the differences may result from a longitudinal dependence of the ULF wave power to be considered in a future study.  相似文献   
996.
Offshore wind power and ocean wave energy are clean, renewable and rich resources. The integrated generation unit for the two kinds of energy is introduced. The energy conversion device (ECD) is utilized to convert the mechanical energy absorbed from the wind power and wave energy into the hydraulic energy, the conversion efficiency of which is significant. In this paper, a power recovery method for testing the efficiency of the ECD is proposed. A simulation desktop is developed to validate the proposed method. The efficiency of the ECD is influenced by the hydraulic cylinders and the mechanical transmission. Here, the static efficiency of the hydraulic cylinders of the ECD is tested first. The results show that the static mechanical efficiency is about 95% and that the volumetric efficiency is over 99%. To test the effects induced by the mechanical transmission of the ECD, each hydraulic cylinder of the ECD is substituted with two springs. Then the power loss of the ECDM under different rotational speeds is obtained. Finally, a test platform is built and the efficiency of the ECD under different rotational speeds and pressures is obtained. The results show that the efficiency is about 80%.  相似文献   
997.
The flow and heat transfer characteristics, including transition critical Reynolds number from two-dimensional to three-dimensional, the influence of slit-cylinder geometric parameter on Strouhal number, Nusselt number and forces acting on the slit-cylinder are numerically investigated. It’s found that transition critical Reynolds number from two-dimensional (flow wake deforms in two directions) to three-dimensional (flow wake deforms in three directions) increases with the augment of the slit width ratio in the range of present considered Reynolds number. The present results indicate that the three-dimensional vortex structures resulting from the deformation of the vortex shedding have significant effects on flow and heat transfer features such as Strouhal number, Nusselt number and forces acting on the cylinders with different ratios of slit width. It’s observed that the drag and lift coefficients reduce as the increase of slit width ratio, and vortex shedding is effectively suppressed by the slits. Moreover, the comprehensive heat transfer performance of the cylinder with the slits is significantly improved with the increase of the slit width ratio.  相似文献   
998.
A potassium dihydrogen phosphate (KDP) optical crystal was machined to an ultra-precision surface with water-in-oil (W/O) micro emulsion polishing fluid. The micro water dissolution principle utilized in the machining process is discussed, its planarization mechanism is illustrated, and an ultra-precision polished surface with 2.205 nm RMS roughness is obtained. However, a substantial quantity of residual contamination remained on the polished surface after machining. This can seriously impact the optical performance of the crystal, and so it must be removed. Fourier transform infrared (FTIR) spectroscopy was used to conduct an investigation into the composition of the surface residue, and the results showed that the residue was comprised of organic chemicals with hydrocarbon chains and aromatic ether, i.e., mostly the polishing fluid. The cleaning method and the principle on which the KDP ultra precision surface investigation is based are discussed in detail, and the cleaning experiments with selected KDP-compatible organic solvents were then performed. FTIR transmittance spectra measurement and microscopic observations were employed to assess the effects of the cleaning process on the surface of the KDP crystal. The results showed that toluene cleaning achieved the most desirable results. This cleaning method produced a surface roughness of 1.826 nm RMS, which allows the KDP crystal to be applied to subsequent engineering applications.  相似文献   
999.
Improvements in fuel consumption and emissions of hybrid electric vehicle (HEV) heavily depend upon an efficient energy management strategy (EMS). This paper presents an optimizing fuzzy control strategy of parallel hybrid electric vehicle employing a quantum chaotic pigeon-inspired optimization (QCPIO) algorithm. In this approach, the torque of the engine and the motor is assigned by a fuzzy torque distribution controller which is based on the battery state of charge (SoC) and the required torque of the hybrid powertrain. The rules and membership functions of the fuzzy torque distribution controller are optimized simultaneously through the use of QCPIO algorithm. The simulation ground on ADVISOR demonstrates that this EMS improves fuel economy more effectually than original fuzzy and PSO_Fuzzy EMS.  相似文献   
1000.
Urban bus has to start and stop frequently due to typical urban traffic conditions, which, however, can be put to good use by regenerative braking. Regenerative braking is a key technology which not only improves vehicle’s fuel economy in mild braking, but also ensures vehicle safety in emergency braking conditions. Because of the inherent limitations of traditional braking system in recycling energy, it is necessary to change its structure to decouple the brake pressure and the brake pedal force. To solve this problem, a compromise design combining traditional pneumatic braking system with brake-by-wire (BBW) system is adopted in this paper on parallel hybrid electric bus. With the transformed braking system, an efficient coordinated control strategy is proposed to solve the problem caused by the different response speeds of pneumatic braking and regenerative braking. The proposed control strategy is carried out, where the road condition varies and different control methods are adopted. Results show that the adopted braking system and the proposed coordinated control strategy are suitable for different roads, and effective in recovering energy and ensuring vehicle safety. At the same time, shorter braking distance and better control of slip ratio verify the performance of MPC compared with a logical threshold-based control. Therefore, this study may offer a useful theoretical reference to the choice of braking system and braking control strategy design in hybrid electric vehicle (HEV).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号