首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1413篇
  免费   67篇
  国内免费   11篇
电工技术   23篇
化学工业   360篇
金属工艺   28篇
机械仪表   50篇
建筑科学   28篇
矿业工程   1篇
能源动力   112篇
轻工业   89篇
水利工程   11篇
石油天然气   9篇
无线电   160篇
一般工业技术   361篇
冶金工业   56篇
原子能技术   13篇
自动化技术   190篇
  2024年   4篇
  2023年   24篇
  2022年   80篇
  2021年   70篇
  2020年   71篇
  2019年   46篇
  2018年   88篇
  2017年   67篇
  2016年   46篇
  2015年   39篇
  2014年   81篇
  2013年   138篇
  2012年   74篇
  2011年   104篇
  2010年   71篇
  2009年   79篇
  2008年   73篇
  2007年   59篇
  2006年   42篇
  2005年   50篇
  2004年   39篇
  2003年   15篇
  2002年   26篇
  2001年   19篇
  2000年   10篇
  1999年   7篇
  1998年   12篇
  1997年   11篇
  1996年   4篇
  1995年   8篇
  1994年   10篇
  1993年   1篇
  1992年   6篇
  1990年   2篇
  1989年   1篇
  1987年   3篇
  1985年   3篇
  1984年   1篇
  1981年   3篇
  1979年   2篇
  1978年   1篇
  1972年   1篇
排序方式: 共有1491条查询结果,搜索用时 15 毫秒
71.
The objective of this study is to predict fluid flow and thermal characteristics associated with forced convection cooling of an array of heat sources mounted in a three-dimensional duct by impinging jets in the presence of cross flow. The equations governing fluid flow and heat transfer are solved using Streamline Upwind / Petrov - Galerkin based finite element method. The role of three dimensional flow structures, horseshoe vortex and counter rotating vortex pair in overall heat transfer distribution is examined. A parametric study is performed to analyze the performance of jets in cross flow for various Reynolds numbers (Re = 100, 250, 500) and velocity ratios (VR = 1.0, 5.0, 10.0). It is observed that with the increase in velocity ratio, the enhancement of heat transfer from heat sources occurs due to increase in the dominance of jet flow accompanied by an unfavorable reduction in heat transfer owing to the increase in size of horseshoe vortex. From numerical studies, it can be concluded that VR = 5.0 exhibits higher overall surface averaged Nusselt number (51.7% over VR = 1.0 and 44.1% over VR = 10.0 for Re = 500) compared to other velocity ratios considered in this study.  相似文献   
72.
Barium sodium borosilicate glasses containing different amounts of uranium oxides were prepared by conventional melt quench method and investigated for their structural aspects by 29Si and 11B MAS NMR technique combined with steady‐state luminescence and lifetime measurements. Based on MAS NMR studies, it is confirmed that uranium ions act as network modifier up to 15 wt% and beyond which a separate uranium containing phase is formed. From the luminescence studies, it is inferred that uranyl species is in a highly distorted environment. For more than 15 wt% uranium oxide incorporation, weaker U–O–U linkages are formed at the expense stronger U–O–Si/B linkages, as suggested by the excited state lifetime value of the uranyl species as well as red shift in emission peak maximum. For glass samples containing more than 25 wt% uranium oxides, crystalline barium uranium silicate gets phase separated from glass matrix as confirmed by XRD studies.  相似文献   
73.
This work addresses the machinability performance of jute/polyester composites with variable laminate thickness using Abrasive water jet machining (AWJM) process. A hybrid objective function was developed using surface roughness (Ra) and kerf taper angle (Ta) and studied using a cost-effective Multi Objective Optimization by Ratio Analysis named as MOORA. The influence of machining parameters such as hydraulic pressure (P), feed rate (Vf) and standoff distance (Sd) on quality characteristics were considered for this analysis. Among all, Vf was found to be a strong influencing factor on Ta and Ra. The deviation in the magnitude of Ta and Ra was observed in the case of varying laminate thicknesses without affecting the optimum condition. Besides, a mathematical regression model was developed for both Ta and Ra based on the correlation between the dependent variables. Furthermore, two other models of Ra available in the literature were considered for comparison with experimental results. The results revealed the suitability of these models for the polymer-based fiber-reinforced composite materials, but limited to the maximum thickness of 3?mm. The good agreement of the models with two different sets of experimental values was also found.  相似文献   
74.
This work presents the results of an experimental investigation concerning the low-velocity impact behavior of woven glass fiber epoxy matrix composite laminates. Experimental test were performed according to ASTM standards using an instrumented falling weight impact testing machine. Impact test were conducted to characterize the type and extent of the damage observed in laminate for range of thickness subjected to different impact velocities. Correlation of the residual indentation of the impacted specimens provides a criterion for the extent of the damage. As the impact energy was increased, the samples experienced one of two types of damages: a crack from the center of the laminate to the edge, or significant damage consisting of a dent localized in the region of impact. The history of relevant kinematical, dynamic and energetic quantities, both to synthesize the dependency of the energy parameters and force threshold values on the impact velocity are discussed.  相似文献   
75.
76.
High electromechanical strains have been developed in this study in Barium Titanate ceramics, suitably doped with Nd and Zr to form a controlled concentration gradient, leading to a dome-like structure on sintering. Compacted pellets constituted of layers of barium titanate powder of varying minor amounts of Nd and Zr powders, incorporated as nitrates precursors, acquire this dome shape on sintering at 1300?C1320oC and cooling to the ambient temperature, the result of the residual thermoelastic strain. The dome structures exhibit high electromechanical responses, and the piezoelectric coefficients (deduced from electric field induced strains measurements in dome-up and dome-down positions) are also found to be exceptionally high. These Nd and Zr doped barium titanate structures could find applications as an environmentally benign material for fabrication of high displacement functionally graded electromechanical actuators in a single sintering step process.  相似文献   
77.
The epoxy ring opening and vicinal diacylation of fatty acids in vegetable oils was found to be promising reaction to synthesize stable biolubricants and bioplasticizers. The current research investigation is emphasized on the synthesis of a value added product vicinally diacylated canola oil by sulfated‐ZrO2. The two‐step research approach employed includes: (i) epoxidation, and (ii) epoxy ring opening and vicinal diacylation of epoxidized triglycerides in the canola oil. Sulfated‐ZrO2 was prepared and characterized to measure the physico‐chemical properties required for the effective catalysis. The Taguchi (L16 orthogonal array) statistical design method was employed to optimize the process conditions for the maximum formation of diacylated canola oil. Sulfated‐ZrO2 demonstrated promising activity for the epoxy ring opening and vicinal diacylation of canola oil, and 99 % conversion was achieved at the optimum process conditions of temperature 130 °C, epoxy to acetic anhydride molar ratio (1:1.25), 16 wt% of catalyst loading and reaction time of 1 h which were inferred from the Taguchi analyses. The products were characterized and confirmed with FT‐IR, 1H NMR and sodium spray mass spectroscopy. Spectroscopic analysis also confirmed the absence of intermediate products. The statistical analyses was undertaken to determine the order, rank and interactions among the process variables. The reaction followed Langmuir–Hinshelwood–Hougen–Watson type mechanism and the kinetic data was fitted in overall second order equation. Calculated apparent activation energy was 23.1 kcal/mol.  相似文献   
78.
A three‐phase water‐soluble nanocomposite of single wall carbon nanotube/silver nanoparticle hybrid fibers embedded in sulfonated polyaniline has been synthesized by a simple chemical solution mixing process. The nanocomposite has been characterized by high resolution electron microscopy, X‐ray diffractometry, FTIR spectroscopy, Raman spectroscopy, and thermogravimetric analysis. Optical and electrical characteristics of the nanocomposite have been determined by UV–vis absorption spectroscopy, photoluminescence spectroscopy, and four‐probe electrical conductivity measurement. A surface plasmon absorption band obtained around 460 nm indicates the presence of silver nanoparticles in the composite. The optical band gap calculation for sulfonated polyaniline vis‐a‐vis the nanocomposite supported the conductivity measurement. Over 1300 times increase in DC electrical conductivity has been observed for the three‐phase nanocomposite, with a filler loading of 20 wt %, at 306 K. This observation could be explained by Mott's variable range hopping model considering a three‐dimensional conduction. Such a nanocomposite has immense potential for use as a cathode material in lithium‐ion batteries and supercapacitors. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41692.  相似文献   
79.
Bioavailability of a poorly soluble drug can be improved by preparing a drug nanosuspension and subsequently drying it into nanocomposite microparticles (NCMPs). Unfortunately, drug nanoparticles aggregate during milling and drying, causing incomplete recovery and slow dissolution. The aim of this study is to investigate the impact of various classes of dispersants on drug dissolution from drug NCMPs, with the ultimate goal of enhancing the bioavailability of poorly water-soluble drugs via high drug nanoparticle loaded, surfactant-free NCMPs. Precursor suspensions of griseofulvin (GF, model drug) nanoparticles in the presence of various dispersants were prepared via wet stirred media milling and spray dried to form the NCMPs. Hydroxypropyl cellulose (HPC, polymer) alone and with sodium dodecyl sulfate (SDS, surfactant) was used as a base-line stabilizer/dispersant during milling. Two swellable crosslinked polymers, croscarmellose sodium (CCS) and sodium starch glycolate (SSG), and a conventional soluble matrix former, Mannitol, were used in addition to HPC. Besides being used as-received, CCS was also wet co-milled with GF for two different durations to examine the impact of CCS particle size. Laser diffraction, scanning electron microscopy, powder X-ray diffraction (XRD), UV spectroscopy, NCMP redispersion and dissolution tests were used for characterization. The results show that incorporation of CCS/SSG, preferably wet-milled to a wide particle size distribution, into the spray-dried NCMPs resulted in fast release and dispersion of drug nanoparticle clusters. The swellable dispersants were superior to Mannitol in dissolution enhancement, and could achieve fast release comparable to SDS, demonstrating the feasibility of spray drying to prepare high drug-loaded, surfactant-free nanocomposites.  相似文献   
80.
The electrochemical treatment (ECT) of textile wastewater was carried out in a 1.5 dm3 electrolyte batch reactor using iron electrodes. With the four plate configurations, a current density (CD) of 89.2 A/m2 and a pH value of 8.5 were found to be optimal, at which maximum reduction in chemical oxygen demand (COD) and colour achieved were 86% and 79%, respectively. Loss of 0.0666 kg/m3 iron electrode and 18.44 kWh/m3 power consumption was observed during ECT with a maximum COD reduction of 79%. The settling characteristics of electrochemically treated effluents as well as the characteristics of foam and residue were also analysed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号