首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   956篇
  免费   44篇
  国内免费   2篇
电工技术   16篇
化学工业   357篇
金属工艺   24篇
机械仪表   18篇
建筑科学   17篇
能源动力   70篇
轻工业   70篇
水利工程   5篇
无线电   59篇
一般工业技术   185篇
冶金工业   80篇
原子能技术   15篇
自动化技术   86篇
  2023年   14篇
  2022年   31篇
  2021年   43篇
  2020年   31篇
  2019年   37篇
  2018年   41篇
  2017年   44篇
  2016年   56篇
  2015年   21篇
  2014年   34篇
  2013年   64篇
  2012年   52篇
  2011年   59篇
  2010年   39篇
  2009年   32篇
  2008年   25篇
  2007年   23篇
  2006年   24篇
  2005年   18篇
  2004年   13篇
  2003年   12篇
  2002年   12篇
  2001年   12篇
  2000年   9篇
  1999年   12篇
  1998年   23篇
  1997年   7篇
  1996年   13篇
  1995年   11篇
  1994年   9篇
  1993年   10篇
  1992年   10篇
  1991年   10篇
  1990年   7篇
  1989年   4篇
  1988年   6篇
  1987年   10篇
  1986年   7篇
  1985年   12篇
  1984年   9篇
  1983年   9篇
  1982年   22篇
  1981年   18篇
  1980年   16篇
  1979年   7篇
  1978年   3篇
  1977年   2篇
  1976年   8篇
  1973年   4篇
  1972年   4篇
排序方式: 共有1002条查询结果,搜索用时 0 毫秒
51.
Agar–gelatin-based co-hydrogels were prepared with different compositions of the agar and the gelatin fractions. The intermolecular hydrogen bonding was higher in the co-hydrogels as compared to the gelatin hydrogel. Swelling studies indicated diffusion-mediated swelling. The electrical stability of the co-hydrogels was higher as compared to the gelatin hydrogel. Though the firmness of the co-hydrogels was higher, Weichert model of viscoelasticity indicated that the inherent mechanical stability of the gelatin hydrogel was superior. The release of ciprofloxacin hydrochloride was predominately Fickian diffusion-mediated. In gist, the co-hydrogels can be tried as polymeric constructs for controlled drug delivery applications.  相似文献   
52.
Castor oil has gained momentous attention as a valuable bio-based monomer and a potential alternative to the current petrobased polyol for synthesizing polyurethane due to the presence of inherent hydroxyl group. In spite of its huge potentiality very little has been reviewed regarding the development of polyurethane from castor oil. This review thus highlights the recent trends and development in the field of polyurethane and its nanocomposite based on castor oil including its biodegradability and weatherability studies. Further, this review also provides an insight regarding the utilization of castor oil based polyurethane and its nanocomposite for coating application.  相似文献   
53.
Zhang Y  Nayak TR  Hong H  Cai W 《Nanoscale》2012,4(13):3833-3842
Graphene, with its excellent physical, chemical, and mechanical properties, holds tremendous potential for a wide variety of biomedical applications. As research on graphene-based nanomaterials is still at a nascent stage due to the short time span since its initial report in 2004, a focused review on this topic is timely and necessary. In this feature review, we first summarize the results from toxicity studies of graphene and its derivatives. Although literature reports have mixed findings, we emphasize that the key question is not how toxic graphene itself is, but how to modify and functionalize it and its derivatives so that they do not exhibit acute/chronic toxicity, can be cleared from the body over time, and thereby can be best used for biomedical applications. We then discuss in detail the exploration of graphene-based nanomaterials for tissue engineering, molecular imaging, and drug/gene delivery applications. The future of graphene-based nanomaterials in biomedicine looks brighter than ever, and it is expected that they will find a wide range of biomedical applications with future research effort and interdisciplinary collaboration.  相似文献   
54.
The present study delineates the effect of stearic acid on the properties of stearyl alcohol oleogel. Herein, a series of oleogels were prepared by mixing different proportions of fatty alcohol (Stearyl alcohol; gelator) and fatty acid (stearic acid; co‐gelator). The characterization of the oleogels was done by thermal, macro‐scale stress relaxation, drug release, and antimicrobial studies. The oleogels were formed by the self‐assembly of stearyl alcohol/stearic acid. Thermal studies indicated that the stearic acid alters the crystal morphology, polymorphic transition and rate of crystallization of stearyl alcohol. The firmness of the oleogels with higher stearic proportion was better, which was due to the formation of a rigid network structure of stearyl alcohol in the presence of stearic acid. The release of ciprofloxacin hydrochloride, model drug, from the oleogels was better from the oleogels with higher stearic acid content. The release of the drug from the oleogels was Fickian diffusion‐mediated; except the oleogel with the highest stearic acid proportion. The antimicrobial study showed that the drug loaded oleogels were able to resist the growth of Escherichia coli, model microbe.  相似文献   
55.
Polypropylene/Pine apple leaf fiber (PP/PALF)‐reinforced nanocomposites were fabricated using melt blending technique in a twin‐screw extruder (Haake Rheocord 9000). Variation in mechanical properties, crystallization behavior, water absorption, and thermal stability with the addition of nanoclay in PP/PALF composites were investigated. It was observed that the tensile, flexural, and impact properties of PP increase with the increase in fiber loading from 10 to 30 wt %. Composites prepared using 30 wt % PALF and 5 wt % MA‐g‐PP exhibited optimum mechanical performance with an increase in tensile strength to 31%, flexural strength to 45% when compared with virgin PP. Addition of nanoclay results in a further increase in tensile and flexural strength of PP/PALF composites to 20 and 24.3%, which shows intercalated morphology. However, addition of nanoclay does not show any substantial increase in impact strength when compared with PP/PALF composites. Dynamic mechanical analysis tests revealed an increase in storage modulus (E′) and damping factor (tan δ), confirming a strong influence between the fiber/nanoclay and MA‐g‐PP. Differential scanning calorimetry, thermogravimetric analysis thermograms also showed improved thermal properties when compared with the virgin matrix. TEM micrographs also showed few layers of agglomerated clay galleries along with mixed nanomorphology in the nanocomposites. Wide angle X‐ray diffraction studies indicated an increase in d‐spacing from 22.4 Å in Cloisite 20A to 40.1 Å in PP/PALF nanocomposite because of improved intercalated morphology. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
56.
A polymer nanocomposite was produced by acrylonitrile‐butadiene‐styrene (ABS) and α‐alumina was prepared through sol‐gel process using aluminum nitrate and citric acid. The particle size was analyzed by X‐ray diffraction and scanning electron microscopy (SEM) studies. The nanocomposites were characterized through tensile strength, Young's modulus, strain% at break, flexural strength, flexural modulus, and impact strength. The ABS/Al2O3 nanocomposites are found to have slightly higher Young's modulus, but lower tensile strength, strain% at break, flexural and impact strength than the virgin ABS. But its flexural modulus increases with increasing Al2O3 content in ABS matrix. The d‐spacing was calculated in nanocomposites to evaluate the interaction between Al2O3 and ABS. The particle distributions in nanocomposites were studied by SEM. The fractured surfaces of tensile test samples were also examined through SEM and show that the ductile fracture of ABS is converted to brittle fracture with addition of Al2O3. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   
57.
A six lump kinetic model that considers the key reactions for the zeolite catalyzed alkylation process is presented. The influence of different reactions and rate limiting steps on reactor performance is examined by coupling an appropriate reactor model that accounts for different back-mixing on reactor scale, with a zeolite particle model which accounts for the diffusion inside the zeolite pore, the alkylation reaction, and zeolite deactivation. Model predictions are compared with experimental results and lead to conclusions that hydride transfer and oligomerization reactions are the key kinetic steps affecting the overall performance of zeolite catalyzed alkylation processes. It is suggested that higher alkylate yield and longer zeolite activity are achieved by increasing the intrinsic hydride transfer rate and the ratio of feed isobutane to n-butene (P/O) concentration. For a given P/O feed ratio, achieving close to plug flow for isobutane and high back-mixing for n-butene further enhances local P/O ratio and yield. Furthermore, optimal zeolite catalyst design should consider the egg shell type of Brønsted acid site distribution and a lower silicon to alumina (Si/Al) ratio.  相似文献   
58.
The following article from the Journal of Applied Polymer Science, “Mechanical and thermal properties enhancement of polycarbonate nanocomposites prepared by melt compounding” by Sanjay K. Nayak, Smita Mohanty, and Sushanta K. Samal, published online on 7 April 2010 in Wiley Online Library (J. Appl. Polym. Sci. 2010 , 117, 2101; http://onlinelibrary.wiley.com/doi/10.1002/app.31222/full ), has been retracted by agreement between the authors, the journal's editors, and Wiley Periodicals, Inc. The retraction has been agreed due to significant overlap with respect to another article, “Effect of hydrogen bonding on the rheology of polycarbonate/organoclay nanocomposites,” by Kyung Min Lee, and Chang Dae Han, published online on 19 June 2003 in Polymer ( 2003 , 44, 4573).  相似文献   
59.
BACKGROUND: A generalized methodology for the synthesis of a hybrid controller for affine systems using sequential adaptive networks (SAN) is presented. SAN consists of an assembly of neural networks that are ordered in a chronological sequence, with one network assigned to each sampling interval. Using a suitable process model based on oxygen metabolism and an a priori objective function, a hybrid control law is derived that can use online measurements and the states predicted by SAN for computing the desired control action. RESULTS: The performance of the SAN–hybrid controller is tested for simulated fed‐batch production of methionine for three different process conditions. Simulations assume that online measurements of dissolved oxygen (DO) concentration are available. The performance of the SAN–hybrid controller gave an NRMSE of ~10?4 in the absence of noise, ~10?3 and ~10?2 for ± 5% and ± 10% noise in the DO measurement and ~10?2 for parameter uncertainty when compared with the ideal model prediction. CONCLUSIONS: The observed performance for unmeasured state prediction and control implementation shows that the proposed SAN–hybrid controller can efficiently compute the manipulated variable required to maintain methionine production along the optimized trajectory for different conditions. The test results show that the SAN–hybrid controller can be used for online real‐time implementation in fed‐batch bioprocesses. Copyright © 2009 Society of Chemical Industry  相似文献   
60.
Niva Nayak 《Fuel》2010,89(1):53-58
Although fly ash disposal is of environmental concern the quality of residues can be improved with respect to high value applications. Fly ash is considered as a potential source of aluminium and other strategic metals. Leaching and metal extraction behaviour of fly ash collected from Talcher Thermal Power Station have been thoroughly studied using sulphuric acid as extractant. The chemical and mineralogical composition of post-leached samples have been determined. Aluminium extraction by direct leaching at low acid concentration and ambient temperature is not suitable for high recovery. The extraction efficiency of aluminium increases significantly at a higher solid:liquid ratio. It is evident that the leachability of metals from fly ash depends on the nature of leaching medium, solid:liquid ratio, temperature and leaching time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号