首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6297篇
  免费   92篇
  国内免费   1篇
电工技术   42篇
综合类   5篇
化学工业   552篇
金属工艺   57篇
机械仪表   55篇
建筑科学   138篇
矿业工程   22篇
能源动力   62篇
轻工业   328篇
水利工程   26篇
石油天然气   9篇
无线电   235篇
一般工业技术   605篇
冶金工业   3902篇
原子能技术   34篇
自动化技术   318篇
  2022年   20篇
  2021年   43篇
  2020年   24篇
  2019年   21篇
  2018年   51篇
  2017年   30篇
  2016年   53篇
  2015年   41篇
  2014年   51篇
  2013年   195篇
  2012年   99篇
  2011年   139篇
  2010年   104篇
  2009年   110篇
  2008年   147篇
  2007年   148篇
  2006年   109篇
  2005年   107篇
  2004年   79篇
  2003年   99篇
  2002年   83篇
  2001年   71篇
  2000年   85篇
  1999年   162篇
  1998年   1019篇
  1997年   585篇
  1996年   419篇
  1995年   234篇
  1994年   224篇
  1993年   246篇
  1992年   51篇
  1991年   61篇
  1990年   86篇
  1989年   82篇
  1988年   75篇
  1987年   91篇
  1986年   65篇
  1985年   85篇
  1984年   57篇
  1983年   42篇
  1982年   48篇
  1981年   46篇
  1980年   69篇
  1979年   25篇
  1978年   49篇
  1977年   154篇
  1976年   284篇
  1975年   33篇
  1974年   23篇
  1969年   19篇
排序方式: 共有6390条查询结果,搜索用时 15 毫秒
21.
22.
The effects of pick density on order picking areas with narrow aisles   总被引:1,自引:0,他引:1  
The cost and service performance of an order fulfillment center are determined partly by how workers are organized into an order picking system. One common approach is batch picking, in which workers circumnavigate a picking area with other workers, gathering items on a pick list. In some systems with high space utilization, narrow aisles prohibit workers from passing one another when in the same aisle, and this leads to congestion. We build analytical and simulation models of these systems to investigate their behavior under different levels of activity. Among other things, our results suggest that when the system is busier and pick density is high (that is, when workers stop often to make picks) congestion is less of a problem and workers are more productive.  相似文献   
23.
24.
Copper is required for aerobic respiration by Mycobacterium tuberculosis and its human host, but this essential element is toxic in abundance. Copper nutritional immunity refers to host processes that modulate levels of free copper to alternately starve and intoxicate invading microbes. Bacteria engulfed by macrophages are initially contained within copper-limited phagosomes, which fuse with ATP7A vesicles that pump in toxic levels of copper. In this report, we examine how CtpB, a P-type ATPase in M. tuberculosis, aids in response to nutritional immunity. In vitro, the induced expression of ctpB in copper-replete medium inhibited mycobacterial growth, while deletion of the gene impaired growth only in copper-starved medium and within copper-limited host cells, suggesting a role for CtpB in copper acquisition or export to the copper-dependent respiration supercomplex. Unexpectedly, the absence of ctpB resulted in hypervirulence in the DBA/2 mouse infection model. As ctpB null strains exhibit diminished growth only in copper-starved conditions, reduced copper transport may have enabled the mutant to acquire a “Goldilocks” amount of the metal during transit through copper-intoxicating environments within this model system. This work reveals CtpB as a component of the M. tuberculosis toolkit to counter host nutritional immunity and underscores the importance of elucidating copper-uptake mechanisms in pathogenic mycobacteria.  相似文献   
25.
Using the interfacial jamming of cellulose nanocrystal (CNC) surfactants, a new concept, termed all‐liquid molding, is introduced to produce all‐liquid objects that retain the shape and details of the mold with high fidelity, yet remain all liquid and are responsive to external stimuli. This simple process, where the viscosity of the CNC dispersion can range from that of water to a crosslinked gel, opens tremendous opportunities for encapsulation, delivery systems, and unique microfluidic devices. The process described is generally applicable to any functionalized nanoparticles dispersed in one liquid and polymer ligands having complementary functionality dissolved in a second immiscible liquid. Such sculpted liquids retain all the characteristics of the liquids but retain shape indefinitely, very much like a solid, and provide a new platform for next‐generation soft materials.  相似文献   
26.
Cationic dialdehyde starch (DAS) dispersions have been prepared in water at 15% concentration by a new cooking procedure. A stable fluid form of cationic DAS, a wet- and dry-strength agent for paper, should facilitate commercial use. Cationic DAS dispersions of pH 3.0 stored in polyethylene containers at 25°C or below were unchanged after 6 months; other storage conditions were also evaluated. An unexpected benefit of the new preparative conditions was a 40% reduction of cationizing agent, betaine hydrazide hydrochloride, without loss of effectiveness. Further savings may be possible by blending cationic DAS with unmodified starch; wet- and dry-strength improvements were maintained in paper with a blend containing 33% unmodified starch and 67% cationic DAS.  相似文献   
27.
28.
Deactivation of tannin in high tannin milo by treatment with urea   总被引:1,自引:0,他引:1  
Experiments were conducted to determine the effectiveness of urea in deactivating tannin in high tannin milo. High tannin milo (Pioneer B 815, 3.4 +/- .3% tannin) was reconstituted with aqueous urea solutions to give combinations of 26, 30, and 34% moisture with 2, 3, and 4% urea (percentage of urea per dry weight of milo). All treatments were maintained at 25 degrees C and were effective in deactivating tannin with no differences among moisture or urea content. The average rate of tannin deactivation was 68 +/- 2% d-1. Temperature affected rate of tannin deactivation in milo reconstituted to 30% moisture and 3% urea when stored at 25 or 60 degrees C. Rate of tannin deactivation was 44 +/- 5 and 89 +/- 18% d-1 at 25 and 60 degrees C, respectively. Tannin in high tannin milo can be deactivated rapidly and completely by reconstitution with aqueous urea. These studies demonstrate that tannin is deactivated completely under conditions where urea is an effective preservative of high moisture milo.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号