首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   8篇
  国内免费   1篇
电工技术   2篇
化学工业   71篇
金属工艺   2篇
机械仪表   3篇
建筑科学   11篇
能源动力   38篇
轻工业   20篇
水利工程   1篇
石油天然气   1篇
无线电   5篇
一般工业技术   18篇
冶金工业   5篇
自动化技术   22篇
  2024年   1篇
  2023年   3篇
  2022年   3篇
  2021年   12篇
  2020年   4篇
  2019年   8篇
  2018年   11篇
  2017年   15篇
  2016年   9篇
  2015年   4篇
  2014年   11篇
  2013年   40篇
  2012年   14篇
  2011年   10篇
  2010年   9篇
  2009年   8篇
  2008年   7篇
  2007年   6篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   4篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有199条查询结果,搜索用时 10 毫秒
51.
The inherent source of gelatin used for commercial hard capsules causes a surging demand for vegetarian capsules. In this work, carrageenan is utilized in preparing hard capsules to meet consumer preferences. Hydroxypropyl methylcellulose (HPMC) was incorporated as a reinforcing agent to improve the low mechanical properties of hard capsules made of carrageenan. The HPMC concentration was manipulated from 0.2 to 1.0 w/v% in the carrageenan matrix. The increasing concentration of HPMC exerts significant effects on the tensile strength and elongation at break, with an improvement of 59.1% and 46.9%, respectively, at the optimized HPMC concentration of 0.8 w/v%. The loop strength of the capsule is also increased by 56.4% with decreasing moisture content. The downfield movement from around 3.20 ppm of the carrageenan proton to 3.33 ppm in the proton nuclear magnetic resonanance ( 1H-NMR) spectrum suggests the formation of intermolecular hydrogen bonding between carrageenan and HPMC, which correlates to the results of Fourier-transform infrared spectroscopy (FTIR) and zeta potential. The glass transition temperature of the film was increased from 37.8 to 65.3°C, showing an upgrade in thermal stability. The film possesses a major mass loss with an activation energy of 64.7 kJ/mol with an increment of 43.4% compared to the control carrageenan. These findings support the conclusion that HPMC enhanced the mechanical properties and thermal stability of the carrageenan film, and the comprehensive analysis of the molecular interaction and decomposition kinetics subsequently may expand the application fields of the carrageenan-HPMC hard capsule as an alternative to gelatin in the future.  相似文献   
52.
The cobalt-free perovskite-oxide, Ba0.5Sr0.5Fe0.8Cu0.2O3−δ (BSFC) is a very important cathode material for intermediate-temperature proton-conducting solid oxide fuel cells. Ba0.5Sr0.5Fe0.8Cu0.2O3−δ nanofibers were synthesized for the first time by a sol-gel electrospinning. Process wherein a combination of polyvinylpyrrolidone and acetic acid was used as the spinning aid and barium, strontium, iron and copper nitrates were used as precursors for the synthesis of BSFC nanofibers. X-ray diffraction studies on products prepared at different calcination temperatures revealed a cubic perovskite structure at 900 °C. The temperature of calcination has a direct effect on the crystallization and surface morphology of the nanofibers. High porosity, and surface area, in addition to an electrical conductivity of 69.54 S cm−1 at 600 °C demonstrate the capability of BSFC nanofibers to serve as effective cathode materials for intermediate-temperature solid oxide fuel cells.  相似文献   
53.
54.
Solar hydrogen production from direct photoelectrochemical (PEC) water splitting is the ultimate goal for a sustainable, renewable and clean hydrogen economy. While there are numerous studies on solving the two main photoelectrode (PE) material issues i.e. efficiency and stability, there is no standard photocell or photoreactor used in the study. The main requirement for the photocell or photoreactor is to allow maximum light to reach the PE. This paper presents an overview of the PE configurations and the possible photocell and photoreactor design for hydrogen production by PEC water splitting.  相似文献   
55.
This paper evaluated the oxygen reduction reaction (ORR) in a microbial fuel cell (MFC) system by using chemically and physically activated electrospun carbon nanofibers (ACNFs) in an MFC and comparing their performance with that of plain carbon paper. The chemical and physical activation was carried out by KOH reagents and CO2 gas to increase the electrode surface area and the catalytic activity. As a result, it was found that the MFC with the chemically activated carbon nanofibers (ACNFs) exhibited better catalytic activity than that of the physically activated ACNFs. Chemically ACNFs with 8 M KOH were found to be one of the most promising candidates for the ORR and could generate up to 3.17 times more power than that of the carbon paper. The ACNFs with 8 M KOH exhibited 78% more power generation than that of the physically activated ACNFs and exhibited 16% more power generation than the chemically activated ACNFs with 4 M KOH. The power per cost of ACNFs with 8 M KOH is 2.65 times greater than that of the traditionally used platinum cathode. Thus, ACNFs are a good alternative catalyst to Pt for MFCs.  相似文献   
56.
Polyaniline (Pani), vanadium oxide (V2O5), and Pani/V2O5 nanocomposite were fabricated and applied as a cathode catalyst in Microbial Fuel Cell (MFC) as an alternative to Pt (Platinum), which is a commonly used expensive cathode catalyst. The cathode catalysts were characterized using Cyclic Voltammetry and Linear Sweep Voltammetry to determine their oxygen reduction activity; furthermore, their structures were observed by X‐ray Diffraction, X‐ray Photoelectron Spectroscopy, Brunauer–Emmett–Teller, and Field‐Emission Scanning Electron Microscopy. The results showed that Pani/V2O5 produced a power density of 79.26 mW/m2, which is higher than V2O5 by 65.31 mW/m2 and Pani by 42.4 mW/m2. Furthermore, the Coulombic Efficiency of the system using Pani/V2O5 (16%) was higher than V2O5 and Pani by 9.2 and 5.5%, respectively. Pani–V2O5 also produced approximately 10% more power than Pt, the best and most common cathode catalyst. It declares that Pani–V2O5 can be a suitable alternative for application in a MFC system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
57.
Ni/Pd-co-promoted Al2O3–La2O3 catalysts for selective hydrogen production from polyethylene terephthalate (PET) plastic waste via steam reforming process has been investigated. The catalysts were prepared by impregnation method and were characterized using XRD, BET, TPD-CO2, TPR-H2, SEM, TGA and DTA. The results showed that Ni-Pd-co-impregnated Al2O3–La2O3 catalyst has excellent activity for the production of hydrogen with a prolong stability. The feed conversion of 87% was achieved over 10% Ni/Al2O3 catalyst which increased to 93.87% in the case of 10% Ni-1% Pd/Al2O3–La2O3 catalysts with an H2 fraction of 0.60. The catalyst performance in term of H2 selectivity and feed conversion was further investigated under various operating parameters, e.g., temperatures, feed flow rates, feed ratios and PET concentrations. It was found that the temperature has positive effects on H2 selectivity and conversion, yet feed flow rate has the adverse effects. In addition, PET concentrations showed improved in H2 selectivity in comparison to when only phenol as a solvent was involved. The Ni particles, which are the noble-based active species are more effective, thus offered good hydrogen production in the PET steam reforming process. Incorporation of La2O3 as support and Pd as a promoter to the Ni/Al2O3 catalyst significantly increased catalyst stability. The Ni–Pd/Al2O3–Al2O3 catalyst showed remarkable activity even after 36 h along with the production of carbon nanotubes, while H2 selectivity and feed conversion was only slightly decreased.  相似文献   
58.
Nafion® 117, as the most popular proton exchange membrane, has been studied with regards to the effect of pre-treatment and biofouling for bioelectricity production and wastewater treatment, in dual chamber microbial fuel cells. The obtained results showed that maximum generated power was obtained using pre-treated Nafion® 117, at approximately 100 mW/m2. However, maximum generated power for untreated Nafion® 117 and biofouled Nafion® 117 were 52.8 mW/m2 and 20.9 mW/m2, respectively. Furthermore, the columbic efficiency of pre-treated Nafion® 117 was 2.32 and 4.15 times higher than untreated and biofouled Nafion® 117, respectively. Obtained results demonstrated that the pre-treatment of the proton exchange membrane is necessary to reach higher powers, and biofouling is a major obstacle for proton exchange membranes in dual chamber MFCs.  相似文献   
59.
In this study, four different catalysts (i.e., carbon black, nickel nanoparticle (Ni)/C, Phthalocyanine/C and copper-phthalocyanine/C), were tested in a two-chamber Microbial Fuel Cell (MFC) and their performances were compared with Pt as the common cathode catalyst in MFC. The characterization of catalysts was done by TEM, XPS and EDX and their electrochemical characteristics were compared by cyclic voltammetry (CV) and Linear Sweep Voltammetry (LSV). The results proved that copper phthalocyanine and nickel nanoparticles are potential alternatives catalyst for Pt. Even copper-phthalocyanine generated power is almost the same as Pt. The CV and LSV results reported high electrochemical activity of these catalysts. The maximum power density and coulombic efficiency was achieved by copper-phthalocyanine/C as 118.2 mW/m2 and 29.3%.  相似文献   
60.
The fallen yellowish bamboo leaves around bamboo crops are always overlooked even though they contain high silica in their ash. Bamboo leaf valorization consequently has the potential to be a green process for synthesizing amorphous silica. Unfortunately, the optimum process parameters have not been widely disclosed. Hence, this study intends to optimize the synthesis of amorphous bio-silica nanoparticles from bamboo leaves using Box–Behnken design (BBD). Bamboo leaves were initially washed with HCl, followed by combustion at 700°C, and then ash washing, extraction of silica with NaOH (sol–gel method), gelation, and drying. According to the results, optimum conditions occur under no acid washing of leaves, solvent-to-feed ratio = 5 mL/g, and extraction duration = 1.5 h. The optimum conditions give the highest purity (94.1 wt.%) and yield (42.33%) as well as the highest surface area (328.61 m2/g), smallest pore diameter (8.69 nm), and largest pore volume (0.71 cc/g) of bio-silica nanoparticles. Furthermore, bio-silica nanoparticles are amorphous, spherical-shaped aggregates, and have a white powdered colour.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号