首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8028篇
  免费   474篇
  国内免费   12篇
电工技术   65篇
综合类   20篇
化学工业   3194篇
金属工艺   84篇
机械仪表   107篇
建筑科学   344篇
矿业工程   69篇
能源动力   195篇
轻工业   1348篇
水利工程   50篇
石油天然气   47篇
无线电   314篇
一般工业技术   1137篇
冶金工业   739篇
原子能技术   16篇
自动化技术   785篇
  2024年   25篇
  2023年   122篇
  2022年   698篇
  2021年   830篇
  2020年   253篇
  2019年   238篇
  2018年   290篇
  2017年   237篇
  2016年   311篇
  2015年   244篇
  2014年   311篇
  2013年   563篇
  2012年   435篇
  2011年   493篇
  2010年   343篇
  2009年   320篇
  2008年   334篇
  2007年   298篇
  2006年   278篇
  2005年   202篇
  2004年   172篇
  2003年   164篇
  2002年   142篇
  2001年   84篇
  2000年   81篇
  1999年   85篇
  1998年   64篇
  1997年   60篇
  1996年   68篇
  1995年   61篇
  1994年   63篇
  1993年   64篇
  1992年   51篇
  1991年   21篇
  1990年   31篇
  1989年   28篇
  1988年   40篇
  1987年   29篇
  1986年   21篇
  1985年   37篇
  1984年   37篇
  1983年   36篇
  1982年   18篇
  1981年   21篇
  1980年   20篇
  1979年   18篇
  1978年   16篇
  1977年   14篇
  1976年   23篇
  1969年   11篇
排序方式: 共有8514条查询结果,搜索用时 15 毫秒
71.
We describe the QoS‐based rerouting algorithm that is designed to implement a two‐phase inter‐switch handoff scheme for wireless ATM networks. We propose to use path extension for each inter‐switch handoff, and invoke path optimization when the handoff path exceeds the delay constraint or maximum path extension hops constraint. We study three types of path optimization schemes: combined QoS‐based, delay‐based and hop based path rerouting schemes. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
72.
Several hemostatic strategies rely on the use of blood components such as fibrinogen and thrombin, which suffer from high cost and short shelf‐life. Here, a cost‐effective synthetic biomaterial is developed for rapid local hemostasis. Instead of using thrombin, thrombin‐receptor‐agonist‐peptide‐6 (TRAP6) is covalently engineered in polyvinyl alcohol (PVA) hydrogels. Soluble PVA‐TRAP6 is first prepared by covalent attachment of cysteine‐containing TRAP6 onto the backbone of PVA‐norbornenes (PVA‐NB) through photoconjugation. Cytotoxicity studies using C2C12 myoblasts indicate that PVA‐NB and PVA‐TRAP6 are nontoxic. Thromboelastography reveals that hemostatic activity of TRAP6 is retained in conjugated form, which is comparable to free TRAP6 solutions with equal concentrations. A 0.1% PVA‐TRAP6 solution can shorten the clotting time (CT) to ca. 45% of the physiological CT. High platelet‐activating efficiency is further confirmed by platelet aggregation assay and flow cytometry (FACS). For potential clinical applications, TRAP6‐presenting hydrogel particulates (PVA‐TRAP6‐P) are developed for local platelet activation and hemostasis. PVA‐TRAP6‐P is prepared by biofunctionalization of photopolymerized PVA‐NB hydrogel particulates (PVA‐NB‐P) with TRAP6. It is demonstrated that PVA‐TRAP6‐P can effectively shorten the CT to ca. 50%. FACS shows that PVA‐TRAP6‐P can activate platelets to a comparable extent as soluble TRAP6 control. Altogether, PVA‐TRAP6‐P represents a promising class of biomaterials for safe hemostasis and wound healing.  相似文献   
73.
The soft nature of organic–inorganic halide perovskites renders their lattice particularly tunable to external stimuli such as pressure, undoubtedly offering an effective way to modify their structure for extraordinary optoelectronic properties. Here, using the methylammonium lead iodide as a representative exploratory platform, it is observed that the pressure-driven lattice disorder can be significantly suppressed via hydrogen isotope effect, which is crucial for better optical and mechanical properties previously unattainable. By a comprehensive in situ neutron/synchrotron-based analysis and optical characterizations, a remarkable photoluminescence (PL) enhancement by threefold is convinced in deuterated CD3ND3PbI3, which also shows much greater structural robustness with retainable PL after high peak-pressure compression–decompression cycle. With the first-principles calculations, an atomic level understanding of the strong correlation among the organic sublattice and lead iodide octahedral framework and structural photonics is proposed, where the less dynamic CD3ND3+ cations are vital to maintain the long-range crystalline order through steric and Coulombic interactions. These results also show that CD3ND3PbI3-based solar cell has comparable photovoltaic performance as CH3NH3PbI3-based device but exhibits considerably slower degradation behavior, thus representing a paradigm by suggesting isotope-functionalized perovskite materials for better materials-by-design and more stable photovoltaic application.  相似文献   
74.
The fundamental nature of charge transport in highly ordered organic semiconductors is under constant debate. At cryogenic temperatures, effects within the semiconductor such as traps or the interaction of charge carriers with the insulating substrate (dipolar disorder or Fröhlich polarons) are known to limit carrier motion. In comparison, at elevated temperatures, where charge carrier mobility often also decreases as function of temperature, phonon scattering or dynamic disorder are frequently discussed mechanisms, but the exact microscopic cause that limits carrier motion is debated. Here, the mobility in the temperature range between 200 and 420 K as function of carrier density is explored in highly ordered perylene‐diimide from 3 to 9 nm thin films. It is observed that above room temperature increasing the gate electric field or decreasing the semiconducting film thickness leads to a suppression of the charge carrier mobility. Via X‐ray diffraction measurements at various temperatures and electric fields, changes of the thin film structure are excluded as cause for the observed mobility decrease. The experimental findings point toward scattering sites or traps at the semiconductor–dielectric interface, or in the dielectric as limiting factor for carrier mobility, whose role is usually neglected at elevated temperatures.  相似文献   
75.
N‐type doping of GaAs nanowires has proven to be difficult because the amphoteric character of silicon impurities is enhanced by the nanowire growth mechanism and growth conditions. The controllable growth of n‐type GaAs nanowires with carrier density as high as 1020 electron cm?3 by self‐assisted molecular beam epitaxy using Te donors is demonstrated here. Carrier density and electron mobility of highly doped nanowires are extracted through a combination of transport measurement and Kelvin probe force microscopy analysis in single‐wire field‐effect devices. Low‐temperature photoluminescence is used to characterize the Te‐doped nanowires over several orders of magnitude of the impurity concentration. The combined use of those techniques allows the precise definition of the growth conditions required for effective Te incorporation.  相似文献   
76.
Photonic Network Communications -  相似文献   
77.
This paper is concerned with the analysis of phase gratings as passive quasi-optical multiplexing devices. One important application of such components is in the local oscillator injection chain of heterodyne array receivers. Gaussian beam mode analysis can be applied as a powerful tool when modelling the optical performance of phase gratings in a real submillimeter system of finite throughput and bandwidth. In our experimental investigations we have concentrated on the Dammann Grating (DG) which is a binary optical component and thus straightforward to manufacture. A number of quartz gratings were fabricated and carefully tested to evaluate the practical limitations of such quasi-optical components. Because of its convenient refractive index quartz can be used to produce gratings with very low reflection losses. The results presented confirm DGs to be particularly suitable multiplexers for sparse arrays of finite bandwidth.  相似文献   
78.
Effects of jasplakinolide (JSP), a stabilizer of F-actin, and latrunculin A (LTA), a destabilizer of F-actin, on a series of events occurring in the execution phase of staurosporine (STS)-induced apoptotic processes were studied using human osteosarcoma 143B cells. Time-dependent apparent increases of the population of cells with collapsed membrane potential of mitochondria (Delta Psi(m)) caused by STS treatment were not due to actual decreases in the Delta Psi(m) per cell, but due to the fragmentation of cells resulting in decreases in the number of active mitochondria per cell. Decreases in the Delta Psi(m) in fragmented cells occurred late in the execution phase. Both JSP and LAT failed to prevent STS-induced release of cytochrome c from mitochondria followed by the activation of caspases 3 and 9, the cleavage of poly (ADP-ribose) polymerase (PARP) and apoptotic nuclear fragmentation. However, both drugs prevented STS-induced apoptotic cell fragmentation and decreases in the Delta Psi(m). These results indicate that physicochemical states of actin filaments play a certain role in the execution phase of STS-induced apoptotic processes.  相似文献   
79.
Although the density of states (DOS) distribution of charge transporting states in an organic semiconductor is vital for device operation, its experimental assessment is not at all straightforward. In this work, the technique of energy resolved–electrochemical impedance spectroscopy (ER-EIS) is employed to determine the DOS distributions of valence (highest occupied molecular orbital (HOMO)) as well as electron (lowest unoccupied molecular orbital (LUMO)) states in several organic semiconductors in the form of neat and blended films. In all cases, the core of the inferred DOS distributions are Gaussians that sometimes carry low energy tails. A comparison of the HOMO and LUMO DOS of P3HT inferred from ER-EIS and photoemission (PE) or inverse PE (IPE) spectroscopy indicates that the PE/IPE spectra are by a factor of 2–3 broader than the ER-EIS spectra, implying that they overestimate the width of the distributions. A comparison of neat films of MeLPPP and SF-PDI2 or PC(61)BM with corresponding blends reveals an increased width of the DOS in the blends. The results demonstrate that this technique does not only allow mapping the DOS distributions over five orders of magnitude and over a wide energy window of 7 eV, but can also delineate changes that occur upon blending.  相似文献   
80.
Motivated by the possibility of modifying energy levels of a molecule without substantially changing its band gap, the impact of gradual fluorination on the optical and structural properties of zinc phthalocyanine (FnZnPc) thin films and the electronic characteristics of FnZnPc/C60 (n = 0, 4, 8, 16) bilayer cells is investigated. UV–vis measurements reveal similar Q‐ and B‐band absorption of FnZnPc thin films with n = 0, 4, 8, whereas for F16ZnPc a different absorption pattern is detected. A correlation between structure and electronic transport is deduced. For F4ZnPc/C60 cells, the enhanced long range order supports fill factors of 55% and an increase of the short circuit current density by 18%, compared to ZnPc/C60. As a parameter being sensitive to the organic/organic interface energetics, the open circuit voltage is analyzed. An enhancement of this quantity by 27% and 50% is detected for F4ZnPc‐ and F8ZnPc‐based devices, respectively, and is attributed to an increase of the quasi‐Fermi level splitting at the donor/acceptor interface. In contrast, for F16ZnPc/C60 a decrease of the open circuit voltage is observed. Complementary photoelectron spectroscopy, external quantum efficiency, and photoluminescence measurements reveal a different working principle, which is ascribed to the particular energy level alignment at the interface of the photoactive materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号