首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2579篇
  免费   135篇
  国内免费   9篇
电工技术   64篇
综合类   4篇
化学工业   591篇
金属工艺   80篇
机械仪表   112篇
建筑科学   29篇
能源动力   82篇
轻工业   244篇
水利工程   6篇
无线电   449篇
一般工业技术   485篇
冶金工业   310篇
原子能技术   48篇
自动化技术   219篇
  2024年   9篇
  2023年   41篇
  2022年   61篇
  2021年   86篇
  2020年   76篇
  2019年   76篇
  2018年   73篇
  2017年   77篇
  2016年   85篇
  2015年   66篇
  2014年   97篇
  2013年   150篇
  2012年   144篇
  2011年   167篇
  2010年   122篇
  2009年   119篇
  2008年   130篇
  2007年   98篇
  2006年   94篇
  2005年   86篇
  2004年   74篇
  2003年   66篇
  2002年   74篇
  2001年   63篇
  2000年   57篇
  1999年   56篇
  1998年   125篇
  1997年   82篇
  1996年   56篇
  1995年   27篇
  1994年   28篇
  1993年   24篇
  1992年   8篇
  1991年   12篇
  1990年   12篇
  1989年   14篇
  1988年   8篇
  1987年   10篇
  1986年   11篇
  1985年   10篇
  1984年   2篇
  1982年   6篇
  1981年   4篇
  1980年   7篇
  1979年   3篇
  1978年   2篇
  1977年   5篇
  1976年   11篇
  1975年   4篇
  1973年   2篇
排序方式: 共有2723条查询结果,搜索用时 15 毫秒
21.
The wire feeding system for gas metal arc welding usually consists of a wire feeder and a torch. In many industries, the distance between the wire feeder and the torch is generally 3 m to 5 m. In a conventional wire feeder, a direct current (DC) motor is used for wire feeding. However, a significant problem with this system is the impossibility of feedback control because of inner or outer impedance. In this paper, a digital wire feeder was developed by using a DC encoder motor and a push-pull torch. An optimized wire-feeding system was also developed by experiment. The welding process was observed using a high-speed camera. The resulting wire-feeding system exhibits low spatter generation and arc stability.  相似文献   
22.
Carbon black has recently been reported to act as an effective catalyst for methane decomposition and to exhibit stable catalytic behavior despite carbon deposition, and thus it can be used for CO2-free production of hydrogen from natural gas. In this work, various carbon blacks with different primary particle size were investigated with respect to methane decomposition under atmospheric pressure from 1123 to 1223 K. Catalytic characteristics, such as activity, activation energy and reaction order, were investigated and compared. It was observed that with decreasing primary particle size (or increasing specific surface area), the specific activity increased and the activation energy decreased. The reaction orders for various pelletized, rubber-reinforcing carbon blacks were 0.6–0.7, about the same regardless of the primary particle size, while they were near 1 for fluffy carbon blacks. Fluffy carbon black showed higher activity and activation energy than the pelletized carbon black of the same primary particle size. Changes of the surface morphology during carbon deposition were observed by TEM. Variations of the number of active sites were discussed in regard of the primary particle size, carbon deposition and binder. The presence of different types of active sites was also suggested.  相似文献   
23.
A bubbling fluidized bed reactor was used to study CO2 capture from flue gas by using a potassium-based solid sorbent, sorbKX35 which was manufactured by the Korea Electric Power Research Institute. A dry sorbent, sorbKX35, consists of K2CO3 for absorption and supporters for mechanical strength. To increase initial CO2 removal, some amount of H2O was absorbed in the sorbent before injecting simulated flue gas. It was possible to achieve 100% CO2 removal for more than 10 minutes at 60°C and a residence time of 2 s with H2O pretreatment. When H2O pretreatment time was long enough to convert K2CO3 of sorbKX35 into K2CO3 · 1.5H2O, CO2 removal was excellent. The results obtained in this study can be used as basic data for designing and operating a large scale CO2 capture process with two fluidized bed reactors. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   
24.
Aluminum (Al)/carbon nanotube (CNT) composite films were fabricated by sputtering pure Al on the surface of aligned multi-walled CNT arrays. Heat treatment was performed in the temperature range 400–950 °C. The interfacial reaction between the Al and the CNTs was investigated by annealing the samples at various temperatures. The results indicated that aluminum carbide (Al4C3) was formed at the interface between the Al and CNT layers, and microscopy observation revealed that the reaction generally occurred at locations containing an amorphous carbon coating, at defect sites, and at open ends of CNTs. Because the nanosized CNTs are precursors for carbide formation, the Al4C3 formed is also nanoscale in size. The carbide formed on the surface as well as on the tips of the CNTs improves the interfacial interaction between the CNTs and the Al layers. This also contributes to the enhancement of the mechanical properties of the composite. Our investigation demonstrated that chemical vapor deposited CNTs are a suitable candidate as reinforcing material for Al and other metal matrices.  相似文献   
25.
The addition of a large amount of conductive filler to paper in order to increase electrical conductivity adversely affects some physical properties of the paper. Hence, it is desirable that conductive paper can be manufactured by adding only a small amount of conductive filler. Reinforced paper was manufactured by adding (1) electroless Ag-plated carbon fiber or (2) activated carbon fiber to the pulp. We investigated the effects of adding Ag-plated carbon fiber on the microstructure, physical properties, electrical conductivity, etc., of the paper. We found that the addition of a small amount of Ag-plated carbon fiber to the pulp made it possible to manufacture conductive paper with a high level of electrical conductivity and great physical strength.  相似文献   
26.
In the electroless plating process, to omit a sensitizing process with SnCl2, we utilized amino‐functional groups on polymer particles. At first, highly monodisperse functional polymer particles could be prepared by a two‐step seeded polymerization of styrene, divinylbenzene, and glycidyl methacrylate. Then, surface epoxy‐functional groups were converted to amino‐functional groups by treating the particles with a diamine. By using these surface amino functionalities, we tried to prepare uniformly metal‐coated monodisperse polymer particles by electroless plating method. The constituents of an electroless nickel solution bath are nickel salt, a reducing agent, suitable complexing agents, and stabilizers. And the metal thickness was simply controlled by changing the loading amount of substrate polymer particles. Morphological observation of nickel‐plated polymer particles was conducted by using optical microscopy, scanning electron microscopy, and transmission electron microscopy. The structural composition of plated nickel was also investigated. Most of all, the function and the efficiency of the amino‐functional group of polymer particles as a polymeric ligand for metal binding was elucidated. From all observations, it was evident that in the electroless metal plating process without any sensitization step, the deposition of metal clusters on substrate particles is largely dependent upon the particle surface functionality. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3801–3808, 2006  相似文献   
27.
Cationic chitosan (CT) and anionic dextran sulfate (Dex) were layer-by-layer (LbL) assembled from aqueous solutions containing 1 M NaCl on a quartz crystal microbalance (QCM) substrate, and the original films ((CT-Dex)3-CT)) were end-capped with LbL assembly from CT solutions containing 1 M NaCl and Dex solutions without NaCl. The enzymatic degradation of films by chitosanase was quantitatively analyzed by QCM in terms of numbers of end-capping steps. The degradation of films end-capped with (Dex-CT)3 was considerably prolonged when compared to those end-capped with other end-capping steps. A mechanism for the prolonged degradation was proposed by quantitative QCM data and zeta potential results.  相似文献   
28.
Nanostructured composites of polyaniline (PANI) with carbon black (CB) were synthesized by an in situ self-organization process. The synthesis is based on the polymerization of aniline in a micellar solution of p-toluenesulfonic acid (TSA) with different weight percentages of CB using ammonium peroxydisulfate (APS) as the oxidizing agent. Field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), UV–vis spectroscopy, and the four-probe meter were used to study the morphological, structural, thermal, and electrical properties of CB–PANI nanocomposites. The results demonstrate that the morphology, thermal stability, and electrical conductivity of the nanocomposites were significantly influenced by the content of CB. SEM results reveal that there was a transition in morphology from composite nanospheres to one-dimensional (1D) composite long nanorods with an increase of CB content. XRD and UV–vis spectra results revealed that there was an increase in the crystallinity and a shift of quinoid transition bands towards lower wavelengths as the amount of CB in the composite increased. The mechanism for the formation of nanostructured composites was explained on the basis of the self-organization of micelles. CB–PANI nanocomposites with a maximum electrical conductivity of 1.38 S/cm were obtained; this is at least three orders of magnitude higher than that of pristine PANI.  相似文献   
29.
Staphylococcus aureus (S. aureus) is a widespread cutaneous pathogen responsible for the great majority of bacterial skin infections in humans. The incidence of skin infections by S. aureus reflects in part the competition between host cutaneous immune defenses and S. aureus virulence factors. As part of the innate immune system in the skin, cationic antimicrobial peptides (CAMPs) such as the β-defensins and cathelicidin contribute to host cutaneous defense, which prevents harmful microorganisms, like S. aureus, from crossing epithelial barriers. Conversely, S. aureus utilizes evasive mechanisms against host defenses to promote its colonization and infection of the skin. In this review, we focus on host-pathogen interactions during colonization and infection of the skin by S. aureus and methicillin-resistant Staphylococcus aureus (MRSA). We will discuss the peptides (defensins, cathelicidins, RNase7, dermcidin) and other mediators (toll-like receptor, IL-1 and IL-17) that comprise the host defense against S. aureus skin infection, as well as the various mechanisms by which S. aureus evades host defenses. It is anticipated that greater understanding of these mechanisms will enable development of more sustainable antimicrobial compounds and new therapeutic approaches to the treatment of S. aureus skin infection and colonization.  相似文献   
30.
Plants are defended from attack by emission of volatile organic compounds (VOCs) that can act directly against pathogens and herbivores or indirectly by recruiting natural enemies of herbivores. However, microbial VOC have been less investigated as potential triggers of plant systemic defense responses against pathogens in the field. Bacillus amyloliquefaciens strain IN937a, a plant growth-promoting rhizobacterium that colonizes plant tissues, stimulates induced systemic resistance (ISR) via its emission of VOCs. We investigated the ISR capacity of VOCs and derivatives collected from strain IN937a against bacterial spot disease caused by Xanthomonas axonopodis pv. vesicatoria in pepper. Of 15 bacterial VOCs and their derivatives, 3-pentanol, which is a C8 amyl alcohol reported to be a component of sex pheromones in insects, was selected for further investigation. Pathogens were infiltrated into pepper leaves 10, 20, 30, and 40 days after treatment and transplantation to the field. Disease severity was assessed 7 days after transplantation. Treatment with 3-pentanol significantly reduced disease severity caused by X. axonopodis and naturally occurring Cucumber mosaic virus in field trials over 2 years. We used quantitative real-time polymerase chain analysis to examine Pathogenesis-Related genes associated with salicylic acid (SA), jasmonic acid (JA), and ethylene defense signaling. The expression of Capsicum annuum Pathogenesis-Related protein 1 (CaPR1), CaPR2, and Ca protease inhibitor2 (CaPIN2) increased in field-grown pepper plants treated with 3-pentanol. Taken together, our results show that 3-pentanol triggers induced resistance by priming SA and JA signaling in pepper under field conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号