首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   425036篇
  免费   7095篇
  国内免费   1368篇
电工技术   7709篇
综合类   324篇
化学工业   64193篇
金属工艺   16778篇
机械仪表   13967篇
建筑科学   9059篇
矿业工程   2200篇
能源动力   11948篇
轻工业   33139篇
水利工程   4520篇
石油天然气   8012篇
武器工业   18篇
无线电   50104篇
一般工业技术   86627篇
冶金工业   79390篇
原子能技术   9237篇
自动化技术   36274篇
  2022年   2546篇
  2021年   4491篇
  2020年   3498篇
  2019年   4379篇
  2018年   7528篇
  2017年   7491篇
  2016年   8024篇
  2015年   5144篇
  2014年   8072篇
  2013年   21998篇
  2012年   12901篇
  2011年   16563篇
  2010年   13252篇
  2009年   14637篇
  2008年   15049篇
  2007年   14713篇
  2006年   12987篇
  2005年   11587篇
  2004年   10969篇
  2003年   10834篇
  2002年   10189篇
  2001年   10004篇
  2000年   9357篇
  1999年   9779篇
  1998年   25821篇
  1997年   17689篇
  1996年   13401篇
  1995年   9843篇
  1994年   8614篇
  1993年   8654篇
  1992年   6125篇
  1991年   5757篇
  1990年   5730篇
  1989年   5369篇
  1988年   5114篇
  1987年   4484篇
  1986年   4355篇
  1985年   4873篇
  1984年   4475篇
  1983年   4023篇
  1982年   3689篇
  1981年   3784篇
  1980年   3480篇
  1979年   3350篇
  1978年   3357篇
  1977年   3846篇
  1976年   5036篇
  1975年   2882篇
  1974年   2689篇
  1973年   2767篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
11.
Recent advancements in isolation and stacking of layered van der Waals materials have created an unprecedented paradigm for demonstrating varieties of 2D quantum materials. Rationally designed van der Waals heterostructures composed of monolayer transition-metal dichalcogenides (TMDs) and few-layer hBN show several unique optoelectronic features driven by correlations. However, entangled superradiant excitonic species in such systems have not been observed before. In this report, it is demonstrated that strong suppression of phonon population at low temperature results in a formation of a coherent excitonic-dipoles ensemble in the heterostructure, and the collective oscillation of those dipoles stimulates a robust phase synchronized ultra-narrow band superradiant emission even at extremely low pumping intensity. Such emitters are in high demand for a multitude of applications, including fundamental research on many-body correlations and other state-of-the-art technologies. This timely demonstration paves the way for further exploration of ultralow-threshold quantum-emitting devices with unmatched design freedom and spectral tunability.  相似文献   
12.
13.
A promising electrocatalyst containing variable percentage of V2O5–TiO2 mixed oxide in graphene oxide support was prepared by embedding the catalyst on Cu substrate through facile electroless Ni–Co–P plating for hydrogen evolution reaction. The solvothermal decomposition method was opted for tuning the crystalline characteristics of prepared material. The optimized mixed oxide was well characterized, active sites centres were identified and explained by X-ray diffraction, high resolution tunnelling electron microscopy, scanning electron microscopy coupled with energy dispersive X-ray and X-ray photon spectroscopy analysis. The structural and electronic characteristics of material was done by fourier transform infrared spectroscopy and the electrochemical behaviour of the prepared material was evaluated by using Tafel plot, electrochemical impedance analysis, linear sweep voltammetry, open circuit analysis and chronoamperometry measurements. The results show the enhanced catalytic activity of Ni–Co–P than pure Ni–P plate, due to synergic effect. Moreover, the prepared mixed oxide incorporated Ni–Co–P plate has a high activity towards HER with low over potential of 101 mV, low Tafel slope of 36 mVdec?1, high exchange current density of 9.90 × 10?2 Acm?2.  相似文献   
14.
Theoretical Foundations of Chemical Engineering - Calcium formate is widely used in construction, tanning, and textile manufacture and as an E238 biological additive in cosmetology and the food...  相似文献   
15.
The production of hydrogen, a favourable alternative to an unsustainable fossil fuel remains as a significant hurdle with the pertaining challenge in the design of proficient, highly productive and sustainable electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, the dysprosium (Dy) doped copper oxide (Cu1-xDyxO) nanoparticles were synthesized via solution combustion technique and utilized as a non-noble metal based bi-functional electrocatalyst for overall water splitting. Due to the improved surface to volume ratio and conductivity, the optimized Cu1-xDyxO (x = 0.01, 0.02) electrocatalysts exhibited impressive HER and OER performance respectively in 1 M KOH delivering a current density of 10 mAcm?2 at a potential of ?0.18 V vs RHE for HER and 1.53 V vs RHE for OER. Moreover, the Dy doped CuO electrocatalyst used as a bi-functional catalyst for overall water splitting achieved a potential of 1.56 V at a current density 10 mAcm?2 and relatively high current density of 66 mAcm?2 at a peak potential of 2 V. A long term stability of 24 h was achieved for a cell voltage of 2.2 V at a constant current density of 30 mAcm?2 with only 10% of the initial current loss. This showcases the accumulative opportunity of dysprosium as a dopant in CuO nanoparticles for fabricating a highly effective and low-cost bi-functional electrocatalyst for overall water splitting.  相似文献   
16.
Russian Engineering Research - Digital tools for managing improvements in automobile production are developed. An operative tool provides warnings regarding the operational quality of the vehicles...  相似文献   
17.
The growth of demand for concrete raises concerns about the consumption of natural resources and ordinary Portland cement. Geopolymer composites show promise as a sustainable alternative for conventional cement concrete. Considering the wide range of potential geopolymer composites applications (including suitability for transportation infrastructure, underwater applications, repair and rehabilitation of structures as well as recent developments in 3D printing), the desired fresh and mechanical properties of the geopolymer composite may vary between applications: for example, rapid setting can be a merit for certain applications and a demerit for others. Therefore, the desired fresh and mechanical properties (e.g., workability, setting time, compressive strength, etc.) can be controlled for a given geopolymer source material through its partial substitution by natural or by-product materials. Recognizing the critical role of various replacement materials in enhancing the potential applications of geopolymer composites, the present review was undertaken to quantify and understand the effect of partial replacement by fly ash, metakaolin, kaolin, red mud, slag, ordinary Portland cement, and silica fume on the setting time, workability, compressive strength and flexural strength of various source materials addressed in the literature. The review also provides insights into research gaps in the field to promote future research.  相似文献   
18.
Automation and Remote Control - We consider multicriteria minimax optimization problems with criteria in the form of the maxima of functionals given by the induced norms of linear operators taking...  相似文献   
19.
The G protein-coupled receptor GPR183/EBI2, which is activated by oxysterols, is a therapeutic target for inflammatory and metabolic diseases where both antagonists and agonists are of potential interest. Using the piperazine diamide core of the known GPR183 antagonist (E)-3-(4-bromophenyl)-1-(4-(4-methoxybenzoyl)piperazin-1-yl)prop-2-en-1-one (NIBR189) as starting point, we identified and sourced 79 structurally related compounds that were commercially available. In vitro screening of this compound collection using a Ca2+ mobilization assay resulted in the identification of 10 compounds with agonist properties. To enable establishment of initial structure-activity relationship trends, these were supplemented with five in-house compounds, two of which were also shown to be GPR183 agonists. Taken together, our findings suggest that the agonist activity of this compound series is dictated by the substitution pattern of one of the two distal phenyl rings, which functions as a molecular efficacy-switch.  相似文献   
20.
Bioactive ceramic scaffolds for bone regeneration consisting of a three-dimensional mesh of interpenetrating struts with square section were fabricated via Digital Light Processing (DLP). The ability of the technique to manufacture 3D porous structures from β-tricalcium phosphate (β-TCP) powders with different dimensions of struts and pores was evaluated, identifying the possibilities and limitations of the manufacturing process. Small pore sizes were found to seriously complicate the elimination of excess slurry from the scaffold’s innermost pores. The effect of the strut/pore size on the mechanical performance of the scaffolds under compressive stresses was also evaluated, but no significant influence was found. Under compressive stresses, the structures resulted weaker when tested perpendicularly to the printing plane due to interlayer shear failure. Interlayer superficial grooves are proposed as potential failure-controlling defects, which could also explain the lack of a Weibull size effect on the mechanical strength of the fabricated DLP scaffolds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号