Drupes were handpicked from olive (Olea europaea L.) trees, cv chemlali, at 13 distinct stages of fruit development, referred to as weeks after flowering (WAF), and analyzed for their free and esterified sterols and triterpenoids content. These two classes of compounds are synthesized via the acetate/mevalonate pathway and share common precursors up to oxidosqualene (OS). Cyclization of OS in either cycloartenol or beta-amyrin constitutes a branch point between primary (sterol pathway) and secondary (triterpenoid pathway) metabolisms. At the onset of fruit development, i.e., between 12 and 18 WAF, drupes were found to contain high amounts of alpha- and beta-amyrins as well as more-oxygenated compounds such as triterpenic diols (erythrodiol and uvaol) and acids (oleanolic, ursolic and maslinic acids). Concomitantly, sterol precursors were barely detectable. From 21 WAF, when the olive fruit reached its final size and began to turn from green to purple, alpha- and beta-amyrins were no longer present, while 4,4-dimethyl- and 4alpha-methylsterols started to be formed, indicating a redirection of the carbon flux from the triterpenoid pathway towards the sterol pathway. Between 21 and 30 WAF, sterol end products, mainly represented by sitosterol, progressively accumulated and triterpenic diols were replaced by triterpenic acids, essentially maslinic acid. Interestingly, the developing olive fruit was found to accumulate significant amounts of parkeol as an ester conjugate. Whatever the stage of development, triterpenoids represent the major triterpenic compounds of the olive fruit. 相似文献
This work shows the preparation of ethylene vinyl acetate copolymer/banana starch/Cloisite 20A organoclay (EVA/starch/C20A) nanocomposites by melt processing. Wide angle X-ray diffraction (WAXD), field emission scanning electron microscopy (FE-SEM), differential scanning calorimetry and thermogravimetric analysis were used to characterize the obtained nanocomposites. Mechanical properties were also determined. In addition, the performance of the nanocomposite films under composting was preliminarily studied; it was conducted using the soil burial test method. Despite knowing that the starch is difficult to process by extrusion, nanocomposite films with high homogeneity were obtained. In this case, C20A organoclay acts as an effective surfactant to make the starch natural polymer compatible with the EVA synthetic polymer. The good compatibility between EVA, starch and C20A clay was also deduced by the formation of intercalated and intercalated-exfoliated structures determined by WAXD and FE-SEM. Physical evidence of the damage in EVA/starch/C20A nanocomposite films after the composting test was observed. It is worth noting that despite the absence of starch, the EVA/C20A nanocomposite film, used as a control, also showed surface damage. This behavior is related to the organic modifier linked to clay C20A, which contains molecules derived from fatty acids that can be used as a food source for microorganisms.
The present study aims to determine fertilizer (N–P–K) recommendations for maize (Zea mays L.) on Acrisols (south Benin) and Ferric and Plintic Luvisols (centre Benin). Two years (2011 and 2012) experiment was conducted at Dogbo and Allada districts (southern) and Dassa (centre Benin). Six on-farm experiments were carried out to validate fertilizer rates simulated by the DSSAT model. The experimental design in each field was a completely randomized bloc with four replications and ten N–P–K rates: 0–0–0 (control), 44–15–17.5 (standard fertilizer recommendation for maize), 80–30–40, 80–15–40, 80–30–25, 80–30–0, 69–30–40, 92–30–40, 69–15–25 and 46–15–25 kg ha?1. Treatments 44–15–17.5 and 46–15–25 showed the lowest grain and stover yields. The observed maize grain yields were highly correlated with the estimated grain yields (R2 values varied between 80 and 91% for growing season 2011 and between 68 and 94% for growing season of 2012). The NRSME values varied between 12.54 and 22.56% (for growing season of 2011) and between 13.09 and 24.13% (for growing season of 2012). The economic analysis for the past 32 years (1980–2012) including the current experiment showed that N–P–K rates 80–30–25 (at Dogbo), 80–15–40 (at Allada) and 80–30–0 (at Dassa) were the best fertilizer recommendations as they presented the highest grain yields and the best return to investment per hectare. Nevertheless, 80–30–25 is advised for Dassa considering that sustainable maize production will require regular inputs of potassium. The 2 years of field experiments were not sufficient to derive biophysically optimal fertilizer recommendation rates for each site. 相似文献
In this paper, the boron-containing mesoporous bioactive glass (MBG) nanospheres have been successfully synthesized by modified sol-gel method assisted by surfactant, and the effect of boron substitution on structure and bioactivity was evaluated by combining experiments and ab initio molecular dynamics (AIMD) simulations. All of the samples exhibit regularly uniform mesoporous spherical microstructure with an average size of about 60 nm, and the boron-containing MBGs show higher specific surface area with the value up to 416.20 m2/g. The simulated body fluid (SBF) immersion test confirms that the deposited hydroxyapatite (HA) evidently increases with the increasing of boron content, indicating that the biological behavior has been significantly improved resulting from incorporation of boron. Additionally, our results also reveal that B2O3 substitution has positive impact on cell proliferation of human periodontal ligament cells (hPDLCs) at lower extracted concentration. Furthermore, AIMD simulation is employed to understand the relationship between structural changes and in vitro bioactivity in terms of structural information, especially the boron coordination number. The results illustrate that the boron-containing MBG nanospheres with excellent bioactivity are great potential for biomedical applications. 相似文献
The sessile drop technique was used to investigate the evolution of the physicochemical properties of cedar wood as a function of contact time with the Penicillium expansum spores. The most important finding showed that the impact of different contact periods (2, 4, 6, 8, 10, and 24 hr) on the wood surface were very indicative. In fact, after 2 hr of contact, the results have shown a significant impact of the bioadhesion of spores to the substrate on both the hydrophobic character (θW = 108.5°; ΔGiwi = ?28.25 mJ/m2), the electron donor (γ? = 13.63 mJ/m2), and the electron acceptor (γ+ = 4.35 mJ/m2) parameters that were significantly reduced compared to the initial wood (θW = 118.5°; ΔGiwi = ?6.29 mJ/m2; γ? = 32.1 mJ/m2; and γ+ = 9.1 mJ/m2). In addition, this decrease of parameters continued over time to stabilize after 10 hr of contact. Indeed, after 24 hr, the acid/base properties were almost zero and the contact angle with water decreased to 30°. Moreover, it was found that the coefficient of correlation (r2) was strong between the contact angle with water, the surface energy, and the electron acceptor character with the contact time parameter with values (r2 = 0.65), (r2 = 0.79), and (r2 = 0.68), respectively. 相似文献
Nanosized hydroxyapatite (HA) powders exhibit a greater surface area than coarser crystals and are expected to show an improved bioactivity. In addition, properties of HA can be tailored over a wide range by incorporating different ions into HA lattice. The aim of this study was to prepare and characterize silicon and magnesium co-doped fluorapatite (Si–Mg–FA) with a chemical composition of Ca9.5Mg0.5 (PO4)5.5(SiO4)0.5F2 by the high-energy ball milling method. Characterization techniques such as X-ray diffraction analysis (XRD), Fourier transformed infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM) were utilized to investigate the structural properties of the obtained powders. Dissolution behavior was evaluated in simulated body fluid (SBF) and physiological normal saline solution at 37 °C for up to 28 days. The results of XRD and FTIR showed that nanocrystalline single-phase Si–Mg–FA powders were synthesized after 12 h of milling. In addition, incorporation of magnesium and silicon into fluorapatite lattice decreased the crystallite size from 53 nm to 40 nm and increased the lattice strain from 0.220% to 0.296%. Dissolution studies revealed that Si–Mg–FA in comparison to fluorapatite (FA), releases more Ca, P and Mg ions into SBF during immersion. 175 ppm Ca, 33.5 ppm P and 48 ppm Mg were detected in the SBF containing Si–Mg–FA after 7days of immersion, while for FA, it was 75 ppm Ca, 21.5 ppm P and 29 ppm Mg. Release of these ions could improve the bioactivity of the obtained nanopowder. It could be concluded that the prepared nanopowders have structural properties such as crystallite size (~40 nm), crystallinity degree (~40%) and chemical composition similar to biological apatite. Therefore, prepared Si–Mg–FA nanopowders are expected to be appropriate candidates for bone substitution materials and also as a phase in polymer or ceramic-based composites for bone regeneration in tissue engineering applications. 相似文献