首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   471篇
  免费   22篇
  国内免费   1篇
电工技术   3篇
综合类   1篇
化学工业   147篇
金属工艺   16篇
机械仪表   17篇
建筑科学   11篇
能源动力   17篇
轻工业   34篇
水利工程   3篇
无线电   26篇
一般工业技术   101篇
冶金工业   44篇
原子能技术   6篇
自动化技术   68篇
  2024年   2篇
  2023年   8篇
  2022年   16篇
  2021年   21篇
  2020年   19篇
  2019年   13篇
  2018年   24篇
  2017年   29篇
  2016年   22篇
  2015年   4篇
  2014年   24篇
  2013年   42篇
  2012年   26篇
  2011年   27篇
  2010年   21篇
  2009年   15篇
  2008年   20篇
  2007年   15篇
  2006年   18篇
  2005年   9篇
  2004年   6篇
  2003年   2篇
  2002年   5篇
  2001年   7篇
  2000年   4篇
  1999年   4篇
  1998年   12篇
  1997年   4篇
  1996年   10篇
  1995年   9篇
  1994年   11篇
  1993年   10篇
  1992年   3篇
  1991年   6篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1984年   4篇
  1980年   8篇
  1979年   1篇
  1976年   2篇
  1973年   1篇
  1970年   1篇
排序方式: 共有494条查询结果,搜索用时 15 毫秒
81.
Short fiber reinforcement plays a definite role in governing the performance of a composite through the improvement of different material properties. The present investigation deals with the effect of aramid pulp and lapinas fiber on the friction and wear characteristics of a composite made from phenolic resin modified by powdered acrylonitrile butadiene rubber (NBR) on a pin-on-disc tribometer. Four composites, containing 10, 20, 30, and 40 wt% of aramid pulp with respect to phenolic resin content, were prepared. Another four composites, containing 50, 100, 200, and 300 wt% of lapinas fiber with respect to phenolic resin content, were also made. It was found that the two different fibers have distinctly different contributions to the friction and wear properties of the composites. It was also found that the incorporation of aramid pulp enhances friction stability of the composites much better than that of lapinas fiber. The change in surface morphology of these composites was studied by scanning electron microscopy (SEM) before and after the friction test. SEM images of friction samples containing aramid pulp corroborated the occurrence of wear through an adhesive wear mechanism, whereas the lapinas fiber–containing composites showed an abrasive wear mechanism.  相似文献   
82.
The role of polyfunctional organic molecules in the synthesis of differently shaped metallic nanostructures and their assembly is investigated. These molecules could be used as spacer ligands and also for surface passivation of nanoparticles, especially with the objective of controlling their electronic and optical properties depending on their length scales. We investigate the role of several such molecules, such as 4-aminothiophenol, tridecylamine, Bismarck brown R and Y, mordant brown, fat brown, chrysoidin (basic orange), and 3-aminobenzoic acid in the synthesis and assembly of various nanoparticles of gold and silver. For example, the use of 4-ATP helps in the formation of rod shaped micelles in aqueous acetonitrile as confirmed by transmission electron microscopy (TEM) suggesting their role as soft templates. In addition, 4-ATP has also been used for the formation of heteroassembly of spherical nanoparticles of gold and silver at controlled pH. Significantly, triangular and hexagonal gold nanoplates are formed at room temperature by similar polyfunctional dye molecule, Bismarck brown R (BBR), while other analogous dye molecules give only arbitrary shaped gold nanoparticles. Further confirmation of their role in shape determination comes from linear amine molecules such as tridecylamine, which give only spherical nanoparticles both for silver and gold. In essence, our study confirms the role of various such organic molecules in shape controlled synthesis of nanoparticles. We also report optical and electrochemical properties of few of these nanostructures as a function of their shape.  相似文献   
83.
The electrical and mechanical properties of new conductive rubber composites based on ethylene–propylene–diene rubber, acrylonitrile butadiene rubber (NBR), and their 50/50 (weight ratio) blend filled with conductive black were investigated. The threshold concentrations for achieving high conductivity are explained on the basis of the viscosity of the rubber. The electrical conductivity increases with the increase in temperature whereas the activation energy of conduction decreases with an increase in filler loading and NBR concentration in the composites. The electrical hysteresis and electrical set are observed during the heating–cooling cycle, which is mainly due to some kind of irreversible change occurring in the conductive networks during heating. The mechanisms of conduction in these systems are discussed in the light of different theories. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 887–895, 1999  相似文献   
84.
Fruits and vegetables are the most utilized commodities among all horticultural crops. They are consumed raw, minimally processed, as well as processed, due to their nutrients and health‐promoting compounds. With the growing population and changing diet habits, the production and processing of horticultural crops, especially fruits and vegetables, have increased very significantly to fulfill the increasing demands. Significant losses and waste in the fresh and processing industries are becoming a serious nutritional, economical, and environmental problem. For example, the United Nations Food and Agriculture Organization (FAO) has estimated that losses and waste in fruits and vegetables are the highest among all types of foods, and may reach up to 60%. The processing operations of fruits and vegetables produce significant wastes of by‐products, which constitute about 25% to 30% of a whole commodity group. The waste is composed mainly of seed, skin, rind, and pomace, containing good sources of potentially valuable bioactive compounds, such as carotenoids, polyphenols, dietary fibers, vitamins, enzymes, and oils, among others. These phytochemicals can be utilized in different industries including the food industry, for the development of functional or enriched foods, the health industry for medicines and pharmaceuticals, and the textile industry, among others. The use of waste for the production of various crucial bioactive components is an important step toward sustainable development. This review describes the types and nature of the waste that originates from fruits and vegetables, the bioactive components in the waste, their extraction techniques, and the potential utilization of the obtained bioactive compounds.  相似文献   
85.
In this paper, a cluster-based feature extraction from the coefficients of a discrete wavelet transform and probabilistic neural networks are proposed for machine fault diagnosis. The proposed approach first divides the matrix of wavelet coefficients into clusters, which are centered around the discriminative coefficient positions identified by an unsupervised procedure, based on the entropy value of coefficients from a set of representative signals. The features that contain the informative attributes of the signals are computed from the energy content of the obtained clusters. Then, machine faults are diagnosed based on these feature vectors using a probabilistic neural network. The experimental results from the application on bearing fault diagnosis have shown that the proposed approach is able to effectively extract important intrinsic information content of the test signals and increase the overall fault diagnostic accuracy, as compared to conventional methods.  相似文献   
86.
Norovirus-associated foodborne outbreaks have become a major public health concern all over the world. Food service establishments are always looking for disinfectants and sanitizers that are effective against various microbes but are non-corrosive and non-toxic to food and food contact surfaces. The efficacy of sodium bicarbonate against certain bacteria and fungi has been documented but its role as a disinfectant against viruses is not known. In this study, anti-calicivirus efficacy of sodium bicarbonate alone and in combination with aldehydes or hydrogen peroxide was evaluated using feline calicivirus (FCV) as a surrogate for norovirus (NoV). Sodium bicarbonate at concentrations of 5% and above was found to be the most effective with 4 log(10) (99.99%) reduction in FCV titers on food contact surfaces within a contact time of 1 min. The virucidal efficacy of sodium bicarbonate was enhanced when it was used in combination with aldehydes or hydrogen peroxide. An advantage of sodium bicarbonate over the available chemical disinfectants for food contact surfaces is its safety, ready availability and low cost. The use of sodium bicarbonate alone or in combination with aldehydes can be an effective and inexpensive method of disinfecting food contact surfaces.  相似文献   
87.
A Terrestrial Biotic Ligand Model (TBLM) was developed using noncalcareous soils from Europe based on Cu and Ni speciation and barley (Hordeum vulgare cv. Regina) root elongation bioassays. Free metal ion (M2+) activity was computed by the WHAM VI model using inputs of soil metal, soil organic matter, and alkali and alkaline earth metals concentrations, and pH in soil solution. The TBLM assumes that metal in soil and in the solution are in equilibrium. Metal ions react with the biotic ligand, the receptor site, and inhibit root elongation. Other ions, principally H+, Ca2+ and Mg2+, compete with M2+ and, therefore, affect its toxicity. Toxicity is correlated only to the fraction of the total biotic ligand sites occupied by M2+. Compared to other models using either the soil metal concentration or M2+ activity as the toxic dose, the TBLM provides a more consistent method to normalize and compare Cu and Ni toxicities to root elongation among different soils. The TBLM was able to predictthe EC50 soil Cu and Ni concentrations generally within a factor of 2 of the observed values, a level of precision similar to that for the aquatic Biotic Ligand Model, indicating its potential utility in metals risk assessment in soils.  相似文献   
88.
The ethylene methyl acrylate copolymer (EMA) and multiwalled carbon nanotube (MWNT) based composites were prepared by solution mixing as well as by melt processing of the films obtained after solution mixing. Field emission scanning electron microscopy, transmission electron microscopy, and XRD were used to characterize morphologies of various composites. MWNTs were found to be more dispersed in the composites prepared by melt process after solution process. There was no obvious agglomeration of MWNTs at lower % loading (up to 2.5%) in the polymer matrices especially the composites are prepared solution plus melt mixing and consequently better interaction between MWNTs and EMA matrix was anticipated. XRD and differential scanning calorimetry studied showed that the nanotubes affect the crystallization process and subsequently their role as a nucleating agent was established. These are reflected in the mechanical properties of the composites. Dynamic mechanical analysis showed that the storage modulus of the composites drop very sharply beyond 2.5 wt% of MWNT content with increasing % strain and it reflects the Payne effect (a substantial decrease in the storage modulus of a particle‐reinforced polymer with an increase in the amplitude of dynamic oscillations). The influence of concentration of filler was also realized by frequency sweep experiment. The incorporation of MWNTs in EMA offered a stabilizing effect since onset of degradation occurs at higher temperatures for composites. POLYM. COMPOS., 31:1168–1178, 2010. © 2009 Society of Plastics Engineers  相似文献   
89.
This article reports the results of studies on the effect of 1-octadecanol (abbreviated as C18) functionalization of carbon nanotubes (CNT) on electrical properties of natural rubber (NR) composites. Dispersion of CNT in NR matrix was studied by transmission electron microscopy (TEM) and electrical resistivity measurements. Fourier transform infra red spectrometry (FTIR) indicates characteristic peaks for ether and hydrocarbon in the case of C18 functionalized CNT. Dielectric constant increases with respect to the filler loading for both unmodified and functionalized CNTs, the effect being less pronounced in the case of functionalized CNT due to its better dispersion in the matrix. Stress–strain plots suggest that the mechanical integrity of the NR/CNT composites, measured in terms of tensile strength, increases on C18 functionalization of the nanofiller. TEM reveals that the functionalization causes improvement in dispersion of CNT in NR matrix, which is corroborated by the increase in electrical resistivity in the case of the functionalized CNT/NR composites.  相似文献   
90.
The present work was aimed at the establishment of baseline radioactive data in the proposed Lambapur and Peddagattu uranium mining areas in the Andhra Pradesh state, India. The background concentrations of naturally occurring radioactivity in the near-surface soils of the study areas were estimated and the results were analysed. The (238)U concentration in the near-surface soil of the study area was found to vary from 100 to 176 Bq kg(-1), with a mean of 138±24 Bq kg(-1). (232)Th in the study area soils was found to vary between 64 and 116 Bq kg(-1), with a mean of 83±15 Bq kg(-1). The (40)K concentration was found to vary between 309 and 373 Bq kg(-1), with a mean of 343±20 Bq kg(-1). The mean natural background radiation levels were also measured with thermoluminescence (TL) dosimetry technique and with a μR-survey meter, in the villages of the study area. Dose rates measured by TL are found to vary from 1287 to 3363 μGy y(-1), with a mean of 2509 ± 424 μGy y(-1). The dose rates measured in the same villages with a μR-survey meter were found to be in the range of 1211-3255 μGy y(-1), with a mean of 2524 ± 395 μGy y(-1). The mean radiation levels in the study area are found to be relatively high when compared with (Indian) national and international averages. Correlations among radon, thoron and gamma dose rates were found to be poor. The pre-operational data produced in this work will be useful for comparison with future radiation levels during the proposed uranium mining operations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号