首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   11篇
  国内免费   2篇
电工技术   7篇
化学工业   72篇
金属工艺   5篇
机械仪表   3篇
建筑科学   2篇
矿业工程   1篇
能源动力   12篇
轻工业   19篇
水利工程   3篇
石油天然气   2篇
无线电   16篇
一般工业技术   24篇
冶金工业   1篇
自动化技术   24篇
  2024年   2篇
  2023年   3篇
  2022年   3篇
  2021年   13篇
  2020年   10篇
  2019年   17篇
  2018年   14篇
  2017年   8篇
  2016年   15篇
  2015年   12篇
  2014年   14篇
  2013年   23篇
  2012年   17篇
  2011年   13篇
  2010年   9篇
  2009年   9篇
  2008年   6篇
  2006年   2篇
  1997年   1篇
排序方式: 共有191条查询结果,搜索用时 341 毫秒
21.
The properties of electrospun nanofibrous membranes (ENMs), including pore size, surface roughness, and hydrophilicity, significantly affect crosslinking, thickness, and morphology of the polyamide selective layer formed on top of ENM substrate in thin film composite membranes, and, ultimately the performance of membranes. We produced polyamide 66 nanofiber layers with a thickness of 10 μm and a fiber diameter of 55 nm, considerably thinner and finer than usual ENM substrates. We then subjected this thin layer to post-production treatment using the efficient low-pressure heat-press (LPHP) method at a pressure of 3 kPa at three different temperatures and two different time intervals. It was found that the morphology of the nanofiber layer was preserved, and its structural characteristics, including pore structure, surface roughness, wettability, crystallinity, and specific surface area, were favorable with LPHP treatment. The optimal conditions were obtained with treatment at 190°C for 3600 s, in which the roughness of the nanofiber substrate decreased from 64 to 25 nm. Using these substrates offers new, less-explored opportunities for optimizing the LPHP treatment of the substrate. These substrates are proposed for a new generation of TFC membranes in a continuous production line, with the possibility of scaling up for pressure- and osmosis-driven membranes.  相似文献   
22.
Nickel-Titanium alloys with stoichiometric single phase and non-stoichiometric dual phase structures of NiTi and NiTi+Ni3Ti are produced through high speed induction melting and combustion synthesis of pure Ti/Ni elements. Both alloys are homogenized at 1273 K for two hours, rolled into thin strips of 0.3 mm thickness, solution treated at 1273 K for two hours under vacuum and finally quenched in water. Effect of ageing on austenite/martensite and intermediate phase transformation temperatures are investigated. Results show that transformation temperatures and reversible shape memory properties comparable with those required for bioengineering applications such as manufacturing of artificial hand prostheses can be obtained through careful control of the chemical composition and the heating processes.  相似文献   
23.
In this letter we consider optimum code structure for positive optical code division multiple-access (optical CDMA) systems. Positive systems are a class of systems that operate with positive real numbers only. We consider the effect of multipleaccess interference in our model and show that code design for both On-Off Keying (OOK) and Binary PPM optical CDMA systems results in the same solutions. Furthermore, we show that a class of codes known as optical orthogonal codes (OOCs) are the best possible positive codes. In obtaining the results we define normalized divergence based on signal-to-multipleaccess interference ratio (SIR) for a multiple-access system in a useful manner and use it as our criterion to maximize the multiple-access capability of the codes. Finally, we demonstrate that BPPM/OOC can be considered as the closest counterpart of ±1 pseudorandom sequence in radio CDMA communication systems.  相似文献   
24.
In situ prolonged delivery of drugs at the site of tumor can be satisfactorily accelerated patient recovery. We compared the effect of temozolomide while incorporated by polycaprolactone nanofibers on the apoptotic behavior of U87 glioma cells. After biocompatibility evaluation of nanofibers by scanning electron microscope and 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide analysis, the apoptosis of U87 cells was evaluated using p53, Bcl2 and Bax genes expression. It was found that nanofiber-temozolomide group showed a greater ability to induce apoptosis as well as have a significantly diminished initial burst release of drug compared with other groups and have promising potential in treating cancer.  相似文献   
25.
The aim of the study was to evaluate the physical and microstructural characteristics of crackers baked in four different industrial baking ovens (indirect radiation-cyclotherm, indirect convection, hybrid and industrial tunnel-ITO). Indirect convection and cyclotherm ovens provide the highest (5685.43 ± 51 W m−2) and the lowest (4860 ± 38.87 W m−2) amount of heat flux, respectively. Despite the amount of heat flux, indirect convection led to crackers with the highest moisture (7.86% vs. 4.82% in clyclotherm) and specific volume, but the lowest hardness. Cyclotherm resulted in crackers with lower specific volume, surface area, porosity, smooth and regular surface. Conversely, the hybrid and ITO ovens showed closer heat flux, leading to crackers with similar moisture content, texture parameters, specific volume, browning and inner porosity. Overall results show the potential of baking using different ovens for modifying the quality parameters of the crackers.  相似文献   
26.
27.
International Journal of Mechanics and Materials in Design - In this paper, employing a new numerical framework, a 2D investigation is conducted on the effect of fiber-matrix contact/debonding on...  相似文献   
28.
Hydrogels, nanogels, and nanocomposites show increasing potential for application in drug delivery systems due to their good chemical and physical properties. Therefore, we were encouraged to combine them to produce a new compound with unique properties for drug release systems. To this aim, we first prepared poly [(N-isopropylacrylamide)-co-(2-dimethylamino ethyl methacrylate) nanogel by copolymerization processes and then added it into the solution of poly (2-dimethylamino ethyl methacrylate)] grafted onto salep. Through dropwise addition of mixed aqueous solution of iron salts into the prepared polymeric solution, a novel hydrogel nanocomposite with excellent pH, thermo, and magnetic responsive was fabricated. The obtained hydrogel nanocomposite were characterized by Fourier transform infrared spectroscopy, thermo gravimetric analysis, X-ray diffraction, scanning electron microscopy, vibrating sample magnetometer, and atomic force micrographs. The dependence of swelling properties of hydrogel nanocomposite on the temperature, pH, and magnetic field were investigated. The release behavior of doxorubicin hydrochloride (DOX) drug from DOX loaded into synthesized hydrogel nanocomposite was investigated at different pHs, temperatures, and magnetic field. In addition, the drug release behavior from obtained hydrogel nanocomposite was monitored via different kinetic models. Lastly, the toxicity of the DOX and DOX-loaded hydrogel nanocomposite were studied on MCF-7 cells at different times. These results suggested that the obtained hydrogel nanocomposite might have high potential applications in drug delivery systems.  相似文献   
29.
In the present work, titania-coated (TiO2) boron nitride nanofibers were produced by the electrospinning method, and the effect of heat treatment on the nanofibers was studied. Electrospinning method is often adopted for the synthesis of one-dimensional nanofibers due to high productivity, simplicity, and cost-effectiveness. In this study, boric oxide was deposited on co-electrospun polyacrylonitrile and TiO2. TiO2-coated boron nitride nanofibers, with a diameter of 100 nm, were obtained after heat treatment and nitridation. The effects of heat treatment on the morphology, surface area and hydrogen storage capacity were studied extensively. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) showed long, bead-free nanofibers and the presence of TiO2 nanoparticles on the nanofibers. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy depicted hexagonal structures of boron nitride. The hydrogen uptake capacities of the nanofibers were investigated by pressure composition isotherm (PCI) in the pressure range of 1–70 bar at room temperature.  相似文献   
30.
Pure and doped ZnO nanofibers with Al and Mg were successfully synthesized via an electrospinning method using a sol–gel containing Polyvinylpyrrolidone as a spinning aid and a zinc nitrate precursor. Calcination of the doped and undoped electrospun nanofibers was conducted at 500 °C in air, and the resultant structures were analyzed by X-ray diffraction (XRD) and Raman spectroscopy. The diameter of the doped nanofibers decreased with increasing viscosity and conductivity, as measured by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Energy dispersive spectroscopy (EDS) showed that Mg and Al are present in ZnO nanofibers. The pressure composition isotherm (PCI) demonstrated that the capacity of hydrogen storage in pure zinc oxide nanofibers is a factor of two greater than that of zinc oxide nanoparticles. However, Al-doped ZnO nanofibers have the highest capacity of hydrogen storage (2.81 wt%) at room temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号