首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1417篇
  免费   68篇
  国内免费   2篇
电工技术   40篇
综合类   8篇
化学工业   359篇
金属工艺   47篇
机械仪表   90篇
建筑科学   33篇
矿业工程   1篇
能源动力   172篇
轻工业   58篇
水利工程   11篇
石油天然气   2篇
无线电   99篇
一般工业技术   300篇
冶金工业   77篇
原子能技术   12篇
自动化技术   178篇
  2023年   25篇
  2022年   44篇
  2021年   48篇
  2020年   66篇
  2019年   47篇
  2018年   73篇
  2017年   46篇
  2016年   68篇
  2015年   48篇
  2014年   69篇
  2013年   135篇
  2012年   63篇
  2011年   111篇
  2010年   75篇
  2009年   68篇
  2008年   64篇
  2007年   47篇
  2006年   40篇
  2005年   26篇
  2004年   31篇
  2003年   23篇
  2002年   18篇
  2001年   8篇
  2000年   12篇
  1999年   17篇
  1998年   21篇
  1997年   17篇
  1996年   15篇
  1995年   20篇
  1994年   11篇
  1993年   8篇
  1992年   7篇
  1991年   10篇
  1990年   5篇
  1989年   10篇
  1988年   8篇
  1987年   10篇
  1986年   6篇
  1985年   4篇
  1984年   15篇
  1983年   5篇
  1982年   6篇
  1981年   11篇
  1980年   5篇
  1977年   2篇
  1976年   2篇
  1973年   3篇
  1972年   2篇
  1971年   2篇
  1968年   2篇
排序方式: 共有1487条查询结果,搜索用时 15 毫秒
71.
Interaction of polymers and other organic admixtures on Portland cement hydration is reviewed. This has been compiled in a systematic way. First hydration of Portland cement is described in short. Later, interaction with 4 important components of Portland cement is discussed. Finally interphase effects in polymer modified hydraulic cement are discussed. It is concluded that polymers and organic admixtures interact with the components of Portland cement when they come in contact with water. This interaction is due to ionic binding, causing cross-links which inhibit the film formation property of polymers and influence considerably the crystallisation process during the hardening of concrete. Some low molecular weight organic substances also have a considerable influence on Portland cement during its reaction with water.  相似文献   
72.
Electrodeposition of metals from solution is usually accompanied by the simultaneous discharge of hydrogen ions or water molecules. When hydrogen is liberated at an iron/steel surface during electrodeposition, a portion of the hydrogen is absorbed by the metal surface and then diffuses into the interior. The diffused hydrogen produces some detrimental effects, such as reduction in ductility and loss in mechanical strength, leading to hydrogen embrittlement. The present paper reports investigations on hydrogen permeation measurements in zinc-manganese alloy deposition using a modified electrode clamp for easy removal and fixing of the electrode. Hydrogen permeation studies indicate that the porosity of the deposit increases in the following order:Zn-Mn(14.3%), Zn-Mn(2.4%), Zn-Mn(24.8%) and Zn-Mn(37.5%).This is in agreement with the corrosion data obtained which indicates that Zn-Mn alloy deposits with low manganese content show better performance than pure zinc deposits.  相似文献   
73.
At high temperatures (s> 1100°C), pyrolysis of coal plays an increasingly important role in the overall coal conversion process. This Paper presents experimental data on the extent of pyrolysis of coal at 800–1600°C. In addition, the effects of the following parameters are examined: gaseous environment (N2, CO2 and H2O), pressure (1–20 atm), particle size, moisture content and type of coal. Previous data on some of these parameters are non-existent. A unique TGA apparatus constructed for this work allows high heating rates (102–103°Cs?1) due to the direct radiation heating. In all the gaseous environments, a plateau in per cent pyrolysis is noticed at 1200–1400°C followed by a sharp increase in the amount of pyrolysis as the temperature is raised. This is found consistent with the three-stage mechanism proposed for the evolution of volatiles. In CO2 and steam environments, there is slightly less pyrolysis than in pure nitrogen, while considerably more pyrolysis is noted for predried coal and for smaller particle sizes. The results suggest a strong influence of secondary volatile reactions on the extent of pyrolysis. Pyrolysis in steam at 800–900°C shows an increase with pressure similar to that reported for pyrolysis in hydrogen. Finally, gasification rates of chars immediately following the pyrolysis are found to be much higher than those of chars prepared separately and then reacted. These results suggest morphological rearrangements and crystallization effects.  相似文献   
74.
Robust Transportation Network Design Under Demand Uncertainty   总被引:4,自引:0,他引:4  
Abstract:   This article addresses the problem of a traffic network design problem (NDP) under demand uncertainty. The origin–destination trip matrices are taken as random variables with known probability distributions. Instead of finding optimal network design solutions for a given future scenario, we are concerned with solutions that are in some sense "good" for a variety of demand realizations. We introduce a definition of robustness accounting for the planner's required degree of robustness. We propose a formulation of the robust network design problem (RNDP) and develop a methodology based on genetic algorithm (GA) to solve the RNDP. The proposed model generates globally near-optimal network design solutions, f, based on the planner's input for robustness. The study makes two important contributions to the network design literature. First, robust network design solutions are significantly different from the deterministic NDPs and not accounting for them could potentially underestimate the network-wide impacts. Second, systematic evaluation of the performance of the model and solution algorithm is conducted on different test networks and budget levels to explore the efficacy of this approach. The results highlight the importance of accounting for robustness in transportation planning and the proposed approach is capable of producing high-quality solutions.  相似文献   
75.
Synchronization of processes is one of the major performance bottlenecks in a distributed system. The synchronization is usually achieved via message passing. There are two basic types of overhead in such a synchronization: the rate of message exchange, and the blocking probabilities of processes. In this paper we consider two processes synchronizing via message passing and study their performance behavior on the basis of the above-mentioned overheads. A number of protocols for message exchange are analyzed. The model gives rise to a three-dimensional Markov chain. An algorithm to solve the model and numerical results are presented to compare the various protocols.  相似文献   
76.
Background: Breast cancer is the most common cancer in women globally, and diagnosing it early and finding potential drug candidates against multi-drug resistant metastatic breast cancers provide the possibilities of better treatment and extending life. Methods: The current study aimed to evaluate the synergistic anti-metastatic activity of Curcumin (Cur) and Paclitaxel (Pacli) individually, the combination of Curcumin–Paclitaxel (CP), and also in conjugation with gold nanoparticles (AuNP–Curcumin (Au-C), AuNP–Paclitaxel (Au-P), and AuNP–Curcumin–Paclitaxel (Au-CP)) in various in vitro and in vivo models. Results: The results from combination treatments of CP and Au-CP demonstrated excellent synergistic cytotoxic effects in triple-negative breast cancer cell lines (MDA MB 231 and 4T1) in in vitro and in vivo mouse models. Detailed mechanistic studies were performed that reveal that the anti-cancer effects were associated with the downregulation of the expression of VEGF, CYCLIN-D1, and STAT-3 genes and upregulation of the apoptotic Caspase-9 gene. The group of mice that received CP combination therapy (with and without gold nanoparticles) showed a significant reduction in the size of tumor when compared to the Pacli alone treatment and control groups. Conclusions: Together, the results suggest that the delivery of gold conjugated Au-CP formulations may help in modulating the outcomes of chemotherapy. The present study is well supported with observations from cell-based assays, molecular and histopathological analyses.  相似文献   
77.
Effective cooling is critical for safe and efficient operation of proton exchange membrane fuel cell (PEMFC) stacks with high power. The narrow range of operating temperature and the small temperature differences between the stack and the ambient introduce significant challenges in the design of a cooling system. To promote the development of effective cooling strategies, cooling techniques reported in technical research publications and patents are reviewed in this paper. Firstly, the characteristics of the heat generation and cooling requirements in a PEMFC stack are introduced. Then the advantages, challenges and progress of various cooling techniques, including (i) cooling with heat spreaders (using high thermal conductivity materials or heat pipes), (ii) cooling with separate air flow, (iii) cooling with liquid (water or antifreeze coolant), and (iv) cooling with phase change (evaporative cooling and cooling through boiling), are systematically reviewed. Finally, further research needs in this area are identified.  相似文献   
78.
This work explores the use of Real-parameter Genetic Algorithm and analyses its performance in the steam condenser (or Circulating Water System) optimization study of a 500 MW fast breeder nuclear reactor. Choice of optimum design parameters for condenser for a power plant from among a large number of technically viable combination is a complex task. This is primarily due to the conflicting nature of the economic implications of the different system parameters for maximizing the capitalized profit. In order to find the optimum design parameters a Real-parameter Genetic Algorithm model is developed and applied. The results obtained are validated with the reference study results.  相似文献   
79.
In the present work, results on the physico-chemical properties of the silica aerogels prepared by sol–gel process using mixtures of TMOS and MTMS as precursor are reported. The wide range of precursor mixture was studied with ratio of MTMS/TMOS in precursor mixtures as 0:100, 25:75, 50:50, 75:25, and 100:0 by volume. The gels with these precursor mixtures were successfully prepared using two step acid–base catalysis for gelation. Acetic acid (0.001 M) and NH4OH (1.5 M) were used for catalysis and resulting alcogels were subsequently dried by supercritical solvent extraction method. FTIR spectroscopy revealed that the aerogels show more intense peak at 1,260 and 790 cm−1 attributed to Si–CH3 resulting in more hydrophobic nature and these results were concurrent with adsorbed water content measurements made using Karl Fischer’s titration technique. The resulted aerogels were characterized using differential thermal analysis, thermo gravimetric analysis and surface area measurements. The surface area measurements showed an interesting trend that the surface area increased from 395 to 1,037 m2/g with increase in MTMS content in the precursor mixture from 0 to 50% and then again decreased to 512 m2/g for further increase in MTMS content from 50 to 100% in the precursor mixture. It was observed from our studies that silica aerogels prepared using a starting mixture of 50% TMOS and 50% MTMS resulted in high moisture resistance (adsorbed water content of 0.721% w/w), low density of 90 kg/m3 and the highest surface area of 1,037 m2/g, which has great potential for catalysis support applications.  相似文献   
80.
Comprehensive study was performed to understand the synergistic interaction between the biocatalyst and anode in terms of electron discharge (ED) pattern and microbial growth by varying electrode (bio-anode) materials viz., graphite, aluminum, brass, copper, nickel and stainless steel. Experiments were performed in bio-electrochemical cell consisting of three electrodes (bio-anode as working electrode, carbon rod as counter electrode and Ag/AgCl(S) as reference electrode) employing anaerobic mixed culture as anodic biocatalyst. Voltammetric and chronoamperometric analysis were used to enumerate the ED and redox reactions. Presence of higher microbial population and dominance of Gram positive bacteria with higher ED supported graphite function as a good bio-anode material. Nickel and stainless steel showed higher ED after graphite associated with dominance of Gram positive bacterial population. Although higher ED was noticed with brass, metal oxidation and decrement in ED with time doesn’t support its function as bio-anode. In spite of higher ED than nickel and stainless steel, aluminum and copper showed significant metal oxidation leading to change in both physical and electrochemical properties along with dominant growth of Gram negative bacteria. This study gives a comprehensive idea on biocatalyst interaction with anode in extracellular electron transfer which is important in improving the anode performance. Juxtaposing the results, it can be deduced that the outcome of the present study can be extended to all bio-electrochemical systems including microbial fuel cell (MFC).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号