首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6180篇
  免费   309篇
  国内免费   19篇
电工技术   102篇
综合类   28篇
化学工业   1500篇
金属工艺   132篇
机械仪表   116篇
建筑科学   353篇
矿业工程   24篇
能源动力   207篇
轻工业   654篇
水利工程   31篇
石油天然气   10篇
无线电   593篇
一般工业技术   1236篇
冶金工业   545篇
原子能技术   55篇
自动化技术   922篇
  2023年   68篇
  2022年   118篇
  2021年   192篇
  2020年   134篇
  2019年   146篇
  2018年   145篇
  2017年   163篇
  2016年   202篇
  2015年   174篇
  2014年   239篇
  2013年   310篇
  2012年   361篇
  2011年   360篇
  2010年   243篇
  2009年   266篇
  2008年   241篇
  2007年   230篇
  2006年   224篇
  2005年   156篇
  2004年   146篇
  2003年   122篇
  2002年   121篇
  2001年   94篇
  2000年   76篇
  1999年   87篇
  1998年   152篇
  1997年   118篇
  1996年   75篇
  1995年   83篇
  1994年   71篇
  1993年   58篇
  1992年   73篇
  1991年   59篇
  1990年   58篇
  1989年   54篇
  1988年   53篇
  1987年   64篇
  1986年   54篇
  1985年   49篇
  1984年   59篇
  1983年   55篇
  1982年   44篇
  1981年   56篇
  1980年   43篇
  1979年   46篇
  1978年   47篇
  1977年   48篇
  1976年   59篇
  1973年   37篇
  1971年   34篇
排序方式: 共有6508条查询结果,搜索用时 15 毫秒
41.
42.
We have extended the empirical work of Vano et al.[1] relating the slope of the detector efficiency curve to the active volume for Ge detectors. The analysis was carried out using Monte Carlo techniques and covered a wide range of incident energies (200 keV-20 MeV) and active volumes (19.6 cm3–396 cm3). It is shown that the expression of Vano et al.[1] is only valid over the energy range 200 keV-3 MeV for active volumes <50 cm3. The upper bound decreases to 2 MeV for volumes of a few hundred cm3. The usable energy range can, however, be extended to 6 MeV by introducing higher order terms into the polynomial. Above this energy, the shape of the efficiency curve is better described by a non-linear function since linear forms fail simultaneously to fit large active volumes and high energies. We therefore propose a composite function which reduces to the form given in Vano et al. in the low energy/active volume limit. By comparison with the Monte Carlo results, it is estimated that relative efficiencies can be calculated to within 6% over the energy range 200 keV-20 MeV and active volumes 20 cm3–400 cm3. Since the largest errors occur for the smallest volumes, we recommend that for energies <3 MeV a two-fold approach be followed, i.e. using the expression of Vano et al.[1] for active volumes less than 50 cm3 and the proposed non-linear form for larger volumes. For high energy work (E > 3 MeV), we advocate the non-linear form. In this way, average errors can be kept 3%. Finally, we point out that the real power of the expression of Vano et al. lies not in predicting efficiencies, but active volumes.  相似文献   
43.
This paper is the second of a series concerned with the penetration and perforation phenomena in two types of propellant and explosive simulant, named Propergol, due to the impact at normal incidence of both blunt and conically-tipped steel strikers. The collision results in fragmentation, plug formation and generation of a cloud of debris that includes particles of measurable dimensions traveling with significant velocities. Both the fragment size and area as well as the ejecta mass are determined experimentally as a function of Propergol specimen thickness and impact velocity or energy. The cumulative number of fragments as a function of size for the Propergol is uniformly found to be a bi-linear semi-logarithmic relationship with the bifurcation occurring at the mean crystal radius. Individual crystals and the crater generated are examined by means of a scanning electron microscope.

A phenomenological model of the fragmentation process is constructed, based on an assumed spherical shape of the fragments and the bi-linear fragment distribution, using energy methods. This is combined with a perforation analysis that considers the process to be sequentially composed of initial indentation, fragmentation, and sliding and deflection of the Propergol disks. An evaluation of this model providing fragment volumes as a function of impact velocity is compared with experimental results and found to be in good agreement.  相似文献   

44.
Cobalt ferrite (CoxFe3?xO4) is prepared in powder form by thermal decomposition of iron and cobalt salts and is analysed by X-ray diffraction and Mössbauer spectroscopic techniques. The variation of Mössbauer parameters, lattice parameters and crystallite size of the products formed with variation in the composition of Fe and Co ratios are studied. The studies confirm the formation of nano-size cobalt ferrite particles with defect structure and it is found to be maximum for the Fe : Co = 60 : 40 ratio of the initial precursor oxides.  相似文献   
45.
The open circuit voltage of the electrochemical cell Ag (nano)|solid silver electrolyte|Ag (macro) is found to be inherently unstable. Even under conditions which support the morphological stability of the arrangement of nanocrystalline silver, the particles grow significantly as soon as they function as electrodes; i.e. when they are in contact with a silver electrolyte and connected electronically at the same time. The process is shown to be due to electrochemical Ostwald ripening with the interfacial transfer of Ag+ through the Ag/electrolyte interface being the rate limiting step. Its activation energy is 0.01 eV. The decay is in good agreement with modelling results.  相似文献   
46.
47.
Atomic-force microscopy is used to study the behavior of an array of Ge islands formed by molecular-beam epitaxy on an Si (100) surface in the presence of an antimony flux incident on the surface. It is shown that, as the Sb flux increases to a certain critical level, the surface density of the islands increases; however, if this critical level is exceeded, nucleation of the islands is suppressed and mesoscopic small-height clusters are observed on the surface. This effect is explained qualitatively in the context of a kinetic model of the islands’ formation in heteroepitaxial systems mismatched with respect to their lattice parameters.  相似文献   
48.
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号